Distance, Position and Section Formula of Vector
Vector Algebra

87676 If the position vectors of the vertices \(A, B\) and \(C\) are \(6 \hat{i}, 6 \hat{j}\) and \(\hat{k}\) respectively with respect to origin \(O\), the volume of the tetrahedron \(O A B C\) is

1 6
2 3
3 \(\frac{1}{6}\)
4 \(\frac{1}{3}\)
Vector Algebra

87677 If \(A(x, 2,8), B(3, y, 4)\) and \(C(4,1, z)\) are vertices of \(\triangle \mathrm{ABC}\) and \(\mathrm{G}(2,1,5)\) is the centroid then the values of \(x, y\) and \(z\) are respectively

1 \((1,0,2)\)
2 \((-1,0,2)\)
3 \((1,0,3)\)
4 \((-1,0,3)\)
Vector Algebra

87678 If \(2 \vec{a}+3 \vec{b}-5 \vec{c}=0\), then the ratio in which \(C\) divided \(A B\) is

1 \(2: 3\) internally
2 \(2: 3\) externally
3 \(3: 2\) internally
4 \(3: 2\) externally
Vector Algebra

87681 If the position vectors of the vertices \(A, B, C\) of a triangle \(\mathrm{ABC}\) are \(7 \hat{\mathrm{j}}+10 \hat{\mathrm{k}},-\hat{\mathrm{i}}+6 \hat{\mathbf{j}}+6 \hat{\mathrm{k}}\) and \(-4 \hat{i}+9 \hat{j}+6 \hat{k}\) respectively, the triangle is :

1 equilateral
2 isosceles
3 scalene
4 right angled and isosceles also
Vector Algebra

87676 If the position vectors of the vertices \(A, B\) and \(C\) are \(6 \hat{i}, 6 \hat{j}\) and \(\hat{k}\) respectively with respect to origin \(O\), the volume of the tetrahedron \(O A B C\) is

1 6
2 3
3 \(\frac{1}{6}\)
4 \(\frac{1}{3}\)
Vector Algebra

87677 If \(A(x, 2,8), B(3, y, 4)\) and \(C(4,1, z)\) are vertices of \(\triangle \mathrm{ABC}\) and \(\mathrm{G}(2,1,5)\) is the centroid then the values of \(x, y\) and \(z\) are respectively

1 \((1,0,2)\)
2 \((-1,0,2)\)
3 \((1,0,3)\)
4 \((-1,0,3)\)
Vector Algebra

87678 If \(2 \vec{a}+3 \vec{b}-5 \vec{c}=0\), then the ratio in which \(C\) divided \(A B\) is

1 \(2: 3\) internally
2 \(2: 3\) externally
3 \(3: 2\) internally
4 \(3: 2\) externally
Vector Algebra

87681 If the position vectors of the vertices \(A, B, C\) of a triangle \(\mathrm{ABC}\) are \(7 \hat{\mathrm{j}}+10 \hat{\mathrm{k}},-\hat{\mathrm{i}}+6 \hat{\mathbf{j}}+6 \hat{\mathrm{k}}\) and \(-4 \hat{i}+9 \hat{j}+6 \hat{k}\) respectively, the triangle is :

1 equilateral
2 isosceles
3 scalene
4 right angled and isosceles also
Vector Algebra

87676 If the position vectors of the vertices \(A, B\) and \(C\) are \(6 \hat{i}, 6 \hat{j}\) and \(\hat{k}\) respectively with respect to origin \(O\), the volume of the tetrahedron \(O A B C\) is

1 6
2 3
3 \(\frac{1}{6}\)
4 \(\frac{1}{3}\)
Vector Algebra

87677 If \(A(x, 2,8), B(3, y, 4)\) and \(C(4,1, z)\) are vertices of \(\triangle \mathrm{ABC}\) and \(\mathrm{G}(2,1,5)\) is the centroid then the values of \(x, y\) and \(z\) are respectively

1 \((1,0,2)\)
2 \((-1,0,2)\)
3 \((1,0,3)\)
4 \((-1,0,3)\)
Vector Algebra

87678 If \(2 \vec{a}+3 \vec{b}-5 \vec{c}=0\), then the ratio in which \(C\) divided \(A B\) is

1 \(2: 3\) internally
2 \(2: 3\) externally
3 \(3: 2\) internally
4 \(3: 2\) externally
Vector Algebra

87681 If the position vectors of the vertices \(A, B, C\) of a triangle \(\mathrm{ABC}\) are \(7 \hat{\mathrm{j}}+10 \hat{\mathrm{k}},-\hat{\mathrm{i}}+6 \hat{\mathbf{j}}+6 \hat{\mathrm{k}}\) and \(-4 \hat{i}+9 \hat{j}+6 \hat{k}\) respectively, the triangle is :

1 equilateral
2 isosceles
3 scalene
4 right angled and isosceles also
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Vector Algebra

87676 If the position vectors of the vertices \(A, B\) and \(C\) are \(6 \hat{i}, 6 \hat{j}\) and \(\hat{k}\) respectively with respect to origin \(O\), the volume of the tetrahedron \(O A B C\) is

1 6
2 3
3 \(\frac{1}{6}\)
4 \(\frac{1}{3}\)
Vector Algebra

87677 If \(A(x, 2,8), B(3, y, 4)\) and \(C(4,1, z)\) are vertices of \(\triangle \mathrm{ABC}\) and \(\mathrm{G}(2,1,5)\) is the centroid then the values of \(x, y\) and \(z\) are respectively

1 \((1,0,2)\)
2 \((-1,0,2)\)
3 \((1,0,3)\)
4 \((-1,0,3)\)
Vector Algebra

87678 If \(2 \vec{a}+3 \vec{b}-5 \vec{c}=0\), then the ratio in which \(C\) divided \(A B\) is

1 \(2: 3\) internally
2 \(2: 3\) externally
3 \(3: 2\) internally
4 \(3: 2\) externally
Vector Algebra

87681 If the position vectors of the vertices \(A, B, C\) of a triangle \(\mathrm{ABC}\) are \(7 \hat{\mathrm{j}}+10 \hat{\mathrm{k}},-\hat{\mathrm{i}}+6 \hat{\mathbf{j}}+6 \hat{\mathrm{k}}\) and \(-4 \hat{i}+9 \hat{j}+6 \hat{k}\) respectively, the triangle is :

1 equilateral
2 isosceles
3 scalene
4 right angled and isosceles also