87703 If \(3 \hat{i}-5 \hat{j}+2 \hat{k}, 7 \hat{i}+2 \hat{j}-4 \hat{k}, \hat{i}-3 \hat{j}+4 \hat{k}\) and \(-7 \hat{\mathbf{i}}-17 \hat{\mathbf{j}}+16 \hat{\mathbf{k}}\) are position vectors of the points \(A, B, C\) and \(D\) respectively, then the angle between \(A B\) and \(C D\) is
87704 If \(a, b, c\) are distinct real numbers and \(P, Q, R\) are three points whose position vectors are respectively \(\quad \mathbf{a} \hat{i}+b \hat{j}+c \hat{k}, b \hat{i}+c \hat{j}+a \hat{k} \quad\) and \(\hat{\mathbf{i}}+\mathbf{a} \hat{\mathbf{j}}+\mathbf{b} \hat{\mathbf{k}}\), then \(\angle \mathrm{QPR}=\)
87705 \(\overrightarrow{\mathbf{a}}, \overrightarrow{\mathrm{b}}, \overrightarrow{\mathrm{c}}\) are non-coplanar vectors. If the position vector of the point of intersection of the line \(\overrightarrow{\mathbf{r}}=\overrightarrow{\mathbf{a}}+\mathbf{2} \overrightarrow{\mathrm{b}}+\mathbf{p}(\overrightarrow{\mathbf{a}}-\mathbf{2} \mathbf{c})\) and the plane \(\overrightarrow{\mathbf{r}}=3 \overrightarrow{\mathbf{a}}-\mathrm{q}(\overrightarrow{\mathbf{c}}-\overrightarrow{\mathrm{b}})+K(\overrightarrow{\mathbf{a}}-\overrightarrow{\mathrm{b}}+\overrightarrow{\mathbf{c}})\) is \(\overrightarrow{\mathbf{r}}=\mathbf{x} \overrightarrow{\mathbf{a}}+\mathbf{y} \vec{b}+z \overrightarrow{\mathbf{c}}\), then \(x\) y \(z\)
87706
If \(\vec{a}, \vec{b}, \vec{c}\) are the position vectors of the points A, B, C respectively, then match the items of list-I with those of list-II.
| List-I |List-II|
|
|A. \(\vec{a} =2 \hat{i}+3 \hat{j}+4 \hat{k}\),\ltbr>\(\vec{b} =3 \hat{i}+4 \hat{j}+2 \hat{k}\),\ltbr>\(\vec{c} =4 \hat{i}+2 \hat{j}+3 \hat{k}\)|I. A, B, C are collinear|
|B. \(\overrightarrow{\mathbf{a}}=\hat{\mathbf{i}}+2 \hat{\mathbf{j}}+3 \hat{\mathbf{k}}\),\ltbr>\(\overrightarrow{\mathbf{b}}=3 \hat{\mathbf{i}}+4 \hat{\mathbf{j}}+7 \hat{\mathbf{k}}\),\ltbr>\(\overrightarrow{\mathbf{c}}=-3 \hat{\mathbf{i}}-2 \hat{\mathbf{j}}-5 \hat{\mathbf{k}}\)|II. \(\triangle \mathrm{ABC}\) is an isosceles triangle|
|C. \(\overrightarrow{\mathbf{a}}=2 \hat{\mathbf{i}}-\hat{\mathbf{j}}+\hat{\mathbf{k}}\),\ltbr>\(\overrightarrow{\mathbf{b}}=\hat{\mathbf{i}}-3 \hat{\mathbf{j}}-\mathbf{5} \hat{\mathbf{k}}\),\ltbr>\(\overrightarrow{\mathbf{c}}=-3 \hat{\mathbf{i}}-4 \hat{\mathbf{j}}-4 \hat{\mathbf{k}}\)|III. \(\triangle \mathrm{ABC}\) is a right angled triangle|
|D. \(\overrightarrow{\mathbf{a}} =\hat{\mathbf{i}}+\hat{\mathbf{j}}+\hat{\mathbf{k}}\),\ltbr>\(\overrightarrow{\mathbf{b}} =\hat{\mathbf{i}}+2 \hat{\mathbf{j}}+3 \hat{\mathbf{k}}\),\ltbr>\(\overrightarrow{\mathbf{c}} =2 \hat{\mathbf{i}}-\hat{\mathbf{j}}+\hat{\mathbf{k}}\)|IV. \(\triangle \text { ABC}\) is a right-angled triangle
| | V. \(\Delta \text { ABC is }\),equilateral, triangle|
The correct match is
87703 If \(3 \hat{i}-5 \hat{j}+2 \hat{k}, 7 \hat{i}+2 \hat{j}-4 \hat{k}, \hat{i}-3 \hat{j}+4 \hat{k}\) and \(-7 \hat{\mathbf{i}}-17 \hat{\mathbf{j}}+16 \hat{\mathbf{k}}\) are position vectors of the points \(A, B, C\) and \(D\) respectively, then the angle between \(A B\) and \(C D\) is
87704 If \(a, b, c\) are distinct real numbers and \(P, Q, R\) are three points whose position vectors are respectively \(\quad \mathbf{a} \hat{i}+b \hat{j}+c \hat{k}, b \hat{i}+c \hat{j}+a \hat{k} \quad\) and \(\hat{\mathbf{i}}+\mathbf{a} \hat{\mathbf{j}}+\mathbf{b} \hat{\mathbf{k}}\), then \(\angle \mathrm{QPR}=\)
87705 \(\overrightarrow{\mathbf{a}}, \overrightarrow{\mathrm{b}}, \overrightarrow{\mathrm{c}}\) are non-coplanar vectors. If the position vector of the point of intersection of the line \(\overrightarrow{\mathbf{r}}=\overrightarrow{\mathbf{a}}+\mathbf{2} \overrightarrow{\mathrm{b}}+\mathbf{p}(\overrightarrow{\mathbf{a}}-\mathbf{2} \mathbf{c})\) and the plane \(\overrightarrow{\mathbf{r}}=3 \overrightarrow{\mathbf{a}}-\mathrm{q}(\overrightarrow{\mathbf{c}}-\overrightarrow{\mathrm{b}})+K(\overrightarrow{\mathbf{a}}-\overrightarrow{\mathrm{b}}+\overrightarrow{\mathbf{c}})\) is \(\overrightarrow{\mathbf{r}}=\mathbf{x} \overrightarrow{\mathbf{a}}+\mathbf{y} \vec{b}+z \overrightarrow{\mathbf{c}}\), then \(x\) y \(z\)
87706
If \(\vec{a}, \vec{b}, \vec{c}\) are the position vectors of the points A, B, C respectively, then match the items of list-I with those of list-II.
| List-I |List-II|
|
|A. \(\vec{a} =2 \hat{i}+3 \hat{j}+4 \hat{k}\),\ltbr>\(\vec{b} =3 \hat{i}+4 \hat{j}+2 \hat{k}\),\ltbr>\(\vec{c} =4 \hat{i}+2 \hat{j}+3 \hat{k}\)|I. A, B, C are collinear|
|B. \(\overrightarrow{\mathbf{a}}=\hat{\mathbf{i}}+2 \hat{\mathbf{j}}+3 \hat{\mathbf{k}}\),\ltbr>\(\overrightarrow{\mathbf{b}}=3 \hat{\mathbf{i}}+4 \hat{\mathbf{j}}+7 \hat{\mathbf{k}}\),\ltbr>\(\overrightarrow{\mathbf{c}}=-3 \hat{\mathbf{i}}-2 \hat{\mathbf{j}}-5 \hat{\mathbf{k}}\)|II. \(\triangle \mathrm{ABC}\) is an isosceles triangle|
|C. \(\overrightarrow{\mathbf{a}}=2 \hat{\mathbf{i}}-\hat{\mathbf{j}}+\hat{\mathbf{k}}\),\ltbr>\(\overrightarrow{\mathbf{b}}=\hat{\mathbf{i}}-3 \hat{\mathbf{j}}-\mathbf{5} \hat{\mathbf{k}}\),\ltbr>\(\overrightarrow{\mathbf{c}}=-3 \hat{\mathbf{i}}-4 \hat{\mathbf{j}}-4 \hat{\mathbf{k}}\)|III. \(\triangle \mathrm{ABC}\) is a right angled triangle|
|D. \(\overrightarrow{\mathbf{a}} =\hat{\mathbf{i}}+\hat{\mathbf{j}}+\hat{\mathbf{k}}\),\ltbr>\(\overrightarrow{\mathbf{b}} =\hat{\mathbf{i}}+2 \hat{\mathbf{j}}+3 \hat{\mathbf{k}}\),\ltbr>\(\overrightarrow{\mathbf{c}} =2 \hat{\mathbf{i}}-\hat{\mathbf{j}}+\hat{\mathbf{k}}\)|IV. \(\triangle \text { ABC}\) is a right-angled triangle
| | V. \(\Delta \text { ABC is }\),equilateral, triangle|
The correct match is
87703 If \(3 \hat{i}-5 \hat{j}+2 \hat{k}, 7 \hat{i}+2 \hat{j}-4 \hat{k}, \hat{i}-3 \hat{j}+4 \hat{k}\) and \(-7 \hat{\mathbf{i}}-17 \hat{\mathbf{j}}+16 \hat{\mathbf{k}}\) are position vectors of the points \(A, B, C\) and \(D\) respectively, then the angle between \(A B\) and \(C D\) is
87704 If \(a, b, c\) are distinct real numbers and \(P, Q, R\) are three points whose position vectors are respectively \(\quad \mathbf{a} \hat{i}+b \hat{j}+c \hat{k}, b \hat{i}+c \hat{j}+a \hat{k} \quad\) and \(\hat{\mathbf{i}}+\mathbf{a} \hat{\mathbf{j}}+\mathbf{b} \hat{\mathbf{k}}\), then \(\angle \mathrm{QPR}=\)
87705 \(\overrightarrow{\mathbf{a}}, \overrightarrow{\mathrm{b}}, \overrightarrow{\mathrm{c}}\) are non-coplanar vectors. If the position vector of the point of intersection of the line \(\overrightarrow{\mathbf{r}}=\overrightarrow{\mathbf{a}}+\mathbf{2} \overrightarrow{\mathrm{b}}+\mathbf{p}(\overrightarrow{\mathbf{a}}-\mathbf{2} \mathbf{c})\) and the plane \(\overrightarrow{\mathbf{r}}=3 \overrightarrow{\mathbf{a}}-\mathrm{q}(\overrightarrow{\mathbf{c}}-\overrightarrow{\mathrm{b}})+K(\overrightarrow{\mathbf{a}}-\overrightarrow{\mathrm{b}}+\overrightarrow{\mathbf{c}})\) is \(\overrightarrow{\mathbf{r}}=\mathbf{x} \overrightarrow{\mathbf{a}}+\mathbf{y} \vec{b}+z \overrightarrow{\mathbf{c}}\), then \(x\) y \(z\)
87706
If \(\vec{a}, \vec{b}, \vec{c}\) are the position vectors of the points A, B, C respectively, then match the items of list-I with those of list-II.
| List-I |List-II|
|
|A. \(\vec{a} =2 \hat{i}+3 \hat{j}+4 \hat{k}\),\ltbr>\(\vec{b} =3 \hat{i}+4 \hat{j}+2 \hat{k}\),\ltbr>\(\vec{c} =4 \hat{i}+2 \hat{j}+3 \hat{k}\)|I. A, B, C are collinear|
|B. \(\overrightarrow{\mathbf{a}}=\hat{\mathbf{i}}+2 \hat{\mathbf{j}}+3 \hat{\mathbf{k}}\),\ltbr>\(\overrightarrow{\mathbf{b}}=3 \hat{\mathbf{i}}+4 \hat{\mathbf{j}}+7 \hat{\mathbf{k}}\),\ltbr>\(\overrightarrow{\mathbf{c}}=-3 \hat{\mathbf{i}}-2 \hat{\mathbf{j}}-5 \hat{\mathbf{k}}\)|II. \(\triangle \mathrm{ABC}\) is an isosceles triangle|
|C. \(\overrightarrow{\mathbf{a}}=2 \hat{\mathbf{i}}-\hat{\mathbf{j}}+\hat{\mathbf{k}}\),\ltbr>\(\overrightarrow{\mathbf{b}}=\hat{\mathbf{i}}-3 \hat{\mathbf{j}}-\mathbf{5} \hat{\mathbf{k}}\),\ltbr>\(\overrightarrow{\mathbf{c}}=-3 \hat{\mathbf{i}}-4 \hat{\mathbf{j}}-4 \hat{\mathbf{k}}\)|III. \(\triangle \mathrm{ABC}\) is a right angled triangle|
|D. \(\overrightarrow{\mathbf{a}} =\hat{\mathbf{i}}+\hat{\mathbf{j}}+\hat{\mathbf{k}}\),\ltbr>\(\overrightarrow{\mathbf{b}} =\hat{\mathbf{i}}+2 \hat{\mathbf{j}}+3 \hat{\mathbf{k}}\),\ltbr>\(\overrightarrow{\mathbf{c}} =2 \hat{\mathbf{i}}-\hat{\mathbf{j}}+\hat{\mathbf{k}}\)|IV. \(\triangle \text { ABC}\) is a right-angled triangle
| | V. \(\Delta \text { ABC is }\),equilateral, triangle|
The correct match is
87703 If \(3 \hat{i}-5 \hat{j}+2 \hat{k}, 7 \hat{i}+2 \hat{j}-4 \hat{k}, \hat{i}-3 \hat{j}+4 \hat{k}\) and \(-7 \hat{\mathbf{i}}-17 \hat{\mathbf{j}}+16 \hat{\mathbf{k}}\) are position vectors of the points \(A, B, C\) and \(D\) respectively, then the angle between \(A B\) and \(C D\) is
87704 If \(a, b, c\) are distinct real numbers and \(P, Q, R\) are three points whose position vectors are respectively \(\quad \mathbf{a} \hat{i}+b \hat{j}+c \hat{k}, b \hat{i}+c \hat{j}+a \hat{k} \quad\) and \(\hat{\mathbf{i}}+\mathbf{a} \hat{\mathbf{j}}+\mathbf{b} \hat{\mathbf{k}}\), then \(\angle \mathrm{QPR}=\)
87705 \(\overrightarrow{\mathbf{a}}, \overrightarrow{\mathrm{b}}, \overrightarrow{\mathrm{c}}\) are non-coplanar vectors. If the position vector of the point of intersection of the line \(\overrightarrow{\mathbf{r}}=\overrightarrow{\mathbf{a}}+\mathbf{2} \overrightarrow{\mathrm{b}}+\mathbf{p}(\overrightarrow{\mathbf{a}}-\mathbf{2} \mathbf{c})\) and the plane \(\overrightarrow{\mathbf{r}}=3 \overrightarrow{\mathbf{a}}-\mathrm{q}(\overrightarrow{\mathbf{c}}-\overrightarrow{\mathrm{b}})+K(\overrightarrow{\mathbf{a}}-\overrightarrow{\mathrm{b}}+\overrightarrow{\mathbf{c}})\) is \(\overrightarrow{\mathbf{r}}=\mathbf{x} \overrightarrow{\mathbf{a}}+\mathbf{y} \vec{b}+z \overrightarrow{\mathbf{c}}\), then \(x\) y \(z\)
87706
If \(\vec{a}, \vec{b}, \vec{c}\) are the position vectors of the points A, B, C respectively, then match the items of list-I with those of list-II.
| List-I |List-II|
|
|A. \(\vec{a} =2 \hat{i}+3 \hat{j}+4 \hat{k}\),\ltbr>\(\vec{b} =3 \hat{i}+4 \hat{j}+2 \hat{k}\),\ltbr>\(\vec{c} =4 \hat{i}+2 \hat{j}+3 \hat{k}\)|I. A, B, C are collinear|
|B. \(\overrightarrow{\mathbf{a}}=\hat{\mathbf{i}}+2 \hat{\mathbf{j}}+3 \hat{\mathbf{k}}\),\ltbr>\(\overrightarrow{\mathbf{b}}=3 \hat{\mathbf{i}}+4 \hat{\mathbf{j}}+7 \hat{\mathbf{k}}\),\ltbr>\(\overrightarrow{\mathbf{c}}=-3 \hat{\mathbf{i}}-2 \hat{\mathbf{j}}-5 \hat{\mathbf{k}}\)|II. \(\triangle \mathrm{ABC}\) is an isosceles triangle|
|C. \(\overrightarrow{\mathbf{a}}=2 \hat{\mathbf{i}}-\hat{\mathbf{j}}+\hat{\mathbf{k}}\),\ltbr>\(\overrightarrow{\mathbf{b}}=\hat{\mathbf{i}}-3 \hat{\mathbf{j}}-\mathbf{5} \hat{\mathbf{k}}\),\ltbr>\(\overrightarrow{\mathbf{c}}=-3 \hat{\mathbf{i}}-4 \hat{\mathbf{j}}-4 \hat{\mathbf{k}}\)|III. \(\triangle \mathrm{ABC}\) is a right angled triangle|
|D. \(\overrightarrow{\mathbf{a}} =\hat{\mathbf{i}}+\hat{\mathbf{j}}+\hat{\mathbf{k}}\),\ltbr>\(\overrightarrow{\mathbf{b}} =\hat{\mathbf{i}}+2 \hat{\mathbf{j}}+3 \hat{\mathbf{k}}\),\ltbr>\(\overrightarrow{\mathbf{c}} =2 \hat{\mathbf{i}}-\hat{\mathbf{j}}+\hat{\mathbf{k}}\)|IV. \(\triangle \text { ABC}\) is a right-angled triangle
| | V. \(\Delta \text { ABC is }\),equilateral, triangle|
The correct match is
87703 If \(3 \hat{i}-5 \hat{j}+2 \hat{k}, 7 \hat{i}+2 \hat{j}-4 \hat{k}, \hat{i}-3 \hat{j}+4 \hat{k}\) and \(-7 \hat{\mathbf{i}}-17 \hat{\mathbf{j}}+16 \hat{\mathbf{k}}\) are position vectors of the points \(A, B, C\) and \(D\) respectively, then the angle between \(A B\) and \(C D\) is
87704 If \(a, b, c\) are distinct real numbers and \(P, Q, R\) are three points whose position vectors are respectively \(\quad \mathbf{a} \hat{i}+b \hat{j}+c \hat{k}, b \hat{i}+c \hat{j}+a \hat{k} \quad\) and \(\hat{\mathbf{i}}+\mathbf{a} \hat{\mathbf{j}}+\mathbf{b} \hat{\mathbf{k}}\), then \(\angle \mathrm{QPR}=\)
87705 \(\overrightarrow{\mathbf{a}}, \overrightarrow{\mathrm{b}}, \overrightarrow{\mathrm{c}}\) are non-coplanar vectors. If the position vector of the point of intersection of the line \(\overrightarrow{\mathbf{r}}=\overrightarrow{\mathbf{a}}+\mathbf{2} \overrightarrow{\mathrm{b}}+\mathbf{p}(\overrightarrow{\mathbf{a}}-\mathbf{2} \mathbf{c})\) and the plane \(\overrightarrow{\mathbf{r}}=3 \overrightarrow{\mathbf{a}}-\mathrm{q}(\overrightarrow{\mathbf{c}}-\overrightarrow{\mathrm{b}})+K(\overrightarrow{\mathbf{a}}-\overrightarrow{\mathrm{b}}+\overrightarrow{\mathbf{c}})\) is \(\overrightarrow{\mathbf{r}}=\mathbf{x} \overrightarrow{\mathbf{a}}+\mathbf{y} \vec{b}+z \overrightarrow{\mathbf{c}}\), then \(x\) y \(z\)
87706
If \(\vec{a}, \vec{b}, \vec{c}\) are the position vectors of the points A, B, C respectively, then match the items of list-I with those of list-II.
| List-I |List-II|
|
|A. \(\vec{a} =2 \hat{i}+3 \hat{j}+4 \hat{k}\),\ltbr>\(\vec{b} =3 \hat{i}+4 \hat{j}+2 \hat{k}\),\ltbr>\(\vec{c} =4 \hat{i}+2 \hat{j}+3 \hat{k}\)|I. A, B, C are collinear|
|B. \(\overrightarrow{\mathbf{a}}=\hat{\mathbf{i}}+2 \hat{\mathbf{j}}+3 \hat{\mathbf{k}}\),\ltbr>\(\overrightarrow{\mathbf{b}}=3 \hat{\mathbf{i}}+4 \hat{\mathbf{j}}+7 \hat{\mathbf{k}}\),\ltbr>\(\overrightarrow{\mathbf{c}}=-3 \hat{\mathbf{i}}-2 \hat{\mathbf{j}}-5 \hat{\mathbf{k}}\)|II. \(\triangle \mathrm{ABC}\) is an isosceles triangle|
|C. \(\overrightarrow{\mathbf{a}}=2 \hat{\mathbf{i}}-\hat{\mathbf{j}}+\hat{\mathbf{k}}\),\ltbr>\(\overrightarrow{\mathbf{b}}=\hat{\mathbf{i}}-3 \hat{\mathbf{j}}-\mathbf{5} \hat{\mathbf{k}}\),\ltbr>\(\overrightarrow{\mathbf{c}}=-3 \hat{\mathbf{i}}-4 \hat{\mathbf{j}}-4 \hat{\mathbf{k}}\)|III. \(\triangle \mathrm{ABC}\) is a right angled triangle|
|D. \(\overrightarrow{\mathbf{a}} =\hat{\mathbf{i}}+\hat{\mathbf{j}}+\hat{\mathbf{k}}\),\ltbr>\(\overrightarrow{\mathbf{b}} =\hat{\mathbf{i}}+2 \hat{\mathbf{j}}+3 \hat{\mathbf{k}}\),\ltbr>\(\overrightarrow{\mathbf{c}} =2 \hat{\mathbf{i}}-\hat{\mathbf{j}}+\hat{\mathbf{k}}\)|IV. \(\triangle \text { ABC}\) is a right-angled triangle
| | V. \(\Delta \text { ABC is }\),equilateral, triangle|
The correct match is