Distance, Position and Section Formula of Vector
Vector Algebra

87703 If \(3 \hat{i}-5 \hat{j}+2 \hat{k}, 7 \hat{i}+2 \hat{j}-4 \hat{k}, \hat{i}-3 \hat{j}+4 \hat{k}\) and \(-7 \hat{\mathbf{i}}-17 \hat{\mathbf{j}}+16 \hat{\mathbf{k}}\) are position vectors of the points \(A, B, C\) and \(D\) respectively, then the angle between \(A B\) and \(C D\) is

1 0
2 \(\frac{\pi}{4}\)
3 \(\frac{\pi}{2}\)
4 \(\pi\)
Vector Algebra

87704 If \(a, b, c\) are distinct real numbers and \(P, Q, R\) are three points whose position vectors are respectively \(\quad \mathbf{a} \hat{i}+b \hat{j}+c \hat{k}, b \hat{i}+c \hat{j}+a \hat{k} \quad\) and \(\hat{\mathbf{i}}+\mathbf{a} \hat{\mathbf{j}}+\mathbf{b} \hat{\mathbf{k}}\), then \(\angle \mathrm{QPR}=\)

1 \(\cos ^{-1}(a+b+c)\)
2 \(\frac{\pi}{2}\)
3 \(\frac{\pi}{3}\)
4 \(\cos ^{-1}\left(\frac{a^2+b^2+c^2}{a b c}\right)\)
Vector Algebra

87705 \(\overrightarrow{\mathbf{a}}, \overrightarrow{\mathrm{b}}, \overrightarrow{\mathrm{c}}\) are non-coplanar vectors. If the position vector of the point of intersection of the line \(\overrightarrow{\mathbf{r}}=\overrightarrow{\mathbf{a}}+\mathbf{2} \overrightarrow{\mathrm{b}}+\mathbf{p}(\overrightarrow{\mathbf{a}}-\mathbf{2} \mathbf{c})\) and the plane \(\overrightarrow{\mathbf{r}}=3 \overrightarrow{\mathbf{a}}-\mathrm{q}(\overrightarrow{\mathbf{c}}-\overrightarrow{\mathrm{b}})+K(\overrightarrow{\mathbf{a}}-\overrightarrow{\mathrm{b}}+\overrightarrow{\mathbf{c}})\) is \(\overrightarrow{\mathbf{r}}=\mathbf{x} \overrightarrow{\mathbf{a}}+\mathbf{y} \vec{b}+z \overrightarrow{\mathbf{c}}\), then \(x\) y \(z\)

1 -8
2 8
3 12
4 -12
Vector Algebra

87706 If \(\vec{a}, \vec{b}, \vec{c}\) are the position vectors of the points A, B, C respectively, then match the items of list-I with those of list-II.
| List-I |List-II|
|
|A. \(\vec{a} =2 \hat{i}+3 \hat{j}+4 \hat{k}\),\ltbr>\(\vec{b} =3 \hat{i}+4 \hat{j}+2 \hat{k}\),\ltbr>\(\vec{c} =4 \hat{i}+2 \hat{j}+3 \hat{k}\)|I. A, B, C are collinear|
|B. \(\overrightarrow{\mathbf{a}}=\hat{\mathbf{i}}+2 \hat{\mathbf{j}}+3 \hat{\mathbf{k}}\),\ltbr>\(\overrightarrow{\mathbf{b}}=3 \hat{\mathbf{i}}+4 \hat{\mathbf{j}}+7 \hat{\mathbf{k}}\),\ltbr>\(\overrightarrow{\mathbf{c}}=-3 \hat{\mathbf{i}}-2 \hat{\mathbf{j}}-5 \hat{\mathbf{k}}\)|II. \(\triangle \mathrm{ABC}\) is an isosceles triangle|
|C. \(\overrightarrow{\mathbf{a}}=2 \hat{\mathbf{i}}-\hat{\mathbf{j}}+\hat{\mathbf{k}}\),\ltbr>\(\overrightarrow{\mathbf{b}}=\hat{\mathbf{i}}-3 \hat{\mathbf{j}}-\mathbf{5} \hat{\mathbf{k}}\),\ltbr>\(\overrightarrow{\mathbf{c}}=-3 \hat{\mathbf{i}}-4 \hat{\mathbf{j}}-4 \hat{\mathbf{k}}\)|III. \(\triangle \mathrm{ABC}\) is a right angled triangle|
|D. \(\overrightarrow{\mathbf{a}} =\hat{\mathbf{i}}+\hat{\mathbf{j}}+\hat{\mathbf{k}}\),\ltbr>\(\overrightarrow{\mathbf{b}} =\hat{\mathbf{i}}+2 \hat{\mathbf{j}}+3 \hat{\mathbf{k}}\),\ltbr>\(\overrightarrow{\mathbf{c}} =2 \hat{\mathbf{i}}-\hat{\mathbf{j}}+\hat{\mathbf{k}}\)|IV. \(\triangle \text { ABC}\) is a right-angled triangle
| | V. \(\Delta \text { ABC is }\),equilateral, triangle|
The correct match is

1 A-I, B-IV, C-III, D-II
2 A-I, B-II, C-III, D-IV
3 A-V, B-I, C-IV, D-II
4 A-V, B-I, C-III, D-II
Vector Algebra

87707 If \(\vec{a}, \vec{b}, \vec{c}\) are three independent vectors and there exists a non zero scalar traid \((l, \mathrm{~m}, \mathrm{n})\) such that \(l(3 a+2 b+c)+\mathbf{m}(2 a+2 b+3 c)+\mathbf{n}(\mathbf{a}\) \(+2 b+5 c)=0\), then

1 \(l=\mathrm{m}=\mathrm{n}\)
2 \(l=\mathrm{n}\)
3 \(l=\mathrm{n}, \mathrm{m}+2 \mathrm{n}=0\)
4 \(\mathrm{m}+2 \mathrm{n}=0, l+\mathrm{n}=0\)
Vector Algebra

87703 If \(3 \hat{i}-5 \hat{j}+2 \hat{k}, 7 \hat{i}+2 \hat{j}-4 \hat{k}, \hat{i}-3 \hat{j}+4 \hat{k}\) and \(-7 \hat{\mathbf{i}}-17 \hat{\mathbf{j}}+16 \hat{\mathbf{k}}\) are position vectors of the points \(A, B, C\) and \(D\) respectively, then the angle between \(A B\) and \(C D\) is

1 0
2 \(\frac{\pi}{4}\)
3 \(\frac{\pi}{2}\)
4 \(\pi\)
Vector Algebra

87704 If \(a, b, c\) are distinct real numbers and \(P, Q, R\) are three points whose position vectors are respectively \(\quad \mathbf{a} \hat{i}+b \hat{j}+c \hat{k}, b \hat{i}+c \hat{j}+a \hat{k} \quad\) and \(\hat{\mathbf{i}}+\mathbf{a} \hat{\mathbf{j}}+\mathbf{b} \hat{\mathbf{k}}\), then \(\angle \mathrm{QPR}=\)

1 \(\cos ^{-1}(a+b+c)\)
2 \(\frac{\pi}{2}\)
3 \(\frac{\pi}{3}\)
4 \(\cos ^{-1}\left(\frac{a^2+b^2+c^2}{a b c}\right)\)
Vector Algebra

87705 \(\overrightarrow{\mathbf{a}}, \overrightarrow{\mathrm{b}}, \overrightarrow{\mathrm{c}}\) are non-coplanar vectors. If the position vector of the point of intersection of the line \(\overrightarrow{\mathbf{r}}=\overrightarrow{\mathbf{a}}+\mathbf{2} \overrightarrow{\mathrm{b}}+\mathbf{p}(\overrightarrow{\mathbf{a}}-\mathbf{2} \mathbf{c})\) and the plane \(\overrightarrow{\mathbf{r}}=3 \overrightarrow{\mathbf{a}}-\mathrm{q}(\overrightarrow{\mathbf{c}}-\overrightarrow{\mathrm{b}})+K(\overrightarrow{\mathbf{a}}-\overrightarrow{\mathrm{b}}+\overrightarrow{\mathbf{c}})\) is \(\overrightarrow{\mathbf{r}}=\mathbf{x} \overrightarrow{\mathbf{a}}+\mathbf{y} \vec{b}+z \overrightarrow{\mathbf{c}}\), then \(x\) y \(z\)

1 -8
2 8
3 12
4 -12
Vector Algebra

87706 If \(\vec{a}, \vec{b}, \vec{c}\) are the position vectors of the points A, B, C respectively, then match the items of list-I with those of list-II.
| List-I |List-II|
|
|A. \(\vec{a} =2 \hat{i}+3 \hat{j}+4 \hat{k}\),\ltbr>\(\vec{b} =3 \hat{i}+4 \hat{j}+2 \hat{k}\),\ltbr>\(\vec{c} =4 \hat{i}+2 \hat{j}+3 \hat{k}\)|I. A, B, C are collinear|
|B. \(\overrightarrow{\mathbf{a}}=\hat{\mathbf{i}}+2 \hat{\mathbf{j}}+3 \hat{\mathbf{k}}\),\ltbr>\(\overrightarrow{\mathbf{b}}=3 \hat{\mathbf{i}}+4 \hat{\mathbf{j}}+7 \hat{\mathbf{k}}\),\ltbr>\(\overrightarrow{\mathbf{c}}=-3 \hat{\mathbf{i}}-2 \hat{\mathbf{j}}-5 \hat{\mathbf{k}}\)|II. \(\triangle \mathrm{ABC}\) is an isosceles triangle|
|C. \(\overrightarrow{\mathbf{a}}=2 \hat{\mathbf{i}}-\hat{\mathbf{j}}+\hat{\mathbf{k}}\),\ltbr>\(\overrightarrow{\mathbf{b}}=\hat{\mathbf{i}}-3 \hat{\mathbf{j}}-\mathbf{5} \hat{\mathbf{k}}\),\ltbr>\(\overrightarrow{\mathbf{c}}=-3 \hat{\mathbf{i}}-4 \hat{\mathbf{j}}-4 \hat{\mathbf{k}}\)|III. \(\triangle \mathrm{ABC}\) is a right angled triangle|
|D. \(\overrightarrow{\mathbf{a}} =\hat{\mathbf{i}}+\hat{\mathbf{j}}+\hat{\mathbf{k}}\),\ltbr>\(\overrightarrow{\mathbf{b}} =\hat{\mathbf{i}}+2 \hat{\mathbf{j}}+3 \hat{\mathbf{k}}\),\ltbr>\(\overrightarrow{\mathbf{c}} =2 \hat{\mathbf{i}}-\hat{\mathbf{j}}+\hat{\mathbf{k}}\)|IV. \(\triangle \text { ABC}\) is a right-angled triangle
| | V. \(\Delta \text { ABC is }\),equilateral, triangle|
The correct match is

1 A-I, B-IV, C-III, D-II
2 A-I, B-II, C-III, D-IV
3 A-V, B-I, C-IV, D-II
4 A-V, B-I, C-III, D-II
Vector Algebra

87707 If \(\vec{a}, \vec{b}, \vec{c}\) are three independent vectors and there exists a non zero scalar traid \((l, \mathrm{~m}, \mathrm{n})\) such that \(l(3 a+2 b+c)+\mathbf{m}(2 a+2 b+3 c)+\mathbf{n}(\mathbf{a}\) \(+2 b+5 c)=0\), then

1 \(l=\mathrm{m}=\mathrm{n}\)
2 \(l=\mathrm{n}\)
3 \(l=\mathrm{n}, \mathrm{m}+2 \mathrm{n}=0\)
4 \(\mathrm{m}+2 \mathrm{n}=0, l+\mathrm{n}=0\)
Vector Algebra

87703 If \(3 \hat{i}-5 \hat{j}+2 \hat{k}, 7 \hat{i}+2 \hat{j}-4 \hat{k}, \hat{i}-3 \hat{j}+4 \hat{k}\) and \(-7 \hat{\mathbf{i}}-17 \hat{\mathbf{j}}+16 \hat{\mathbf{k}}\) are position vectors of the points \(A, B, C\) and \(D\) respectively, then the angle between \(A B\) and \(C D\) is

1 0
2 \(\frac{\pi}{4}\)
3 \(\frac{\pi}{2}\)
4 \(\pi\)
Vector Algebra

87704 If \(a, b, c\) are distinct real numbers and \(P, Q, R\) are three points whose position vectors are respectively \(\quad \mathbf{a} \hat{i}+b \hat{j}+c \hat{k}, b \hat{i}+c \hat{j}+a \hat{k} \quad\) and \(\hat{\mathbf{i}}+\mathbf{a} \hat{\mathbf{j}}+\mathbf{b} \hat{\mathbf{k}}\), then \(\angle \mathrm{QPR}=\)

1 \(\cos ^{-1}(a+b+c)\)
2 \(\frac{\pi}{2}\)
3 \(\frac{\pi}{3}\)
4 \(\cos ^{-1}\left(\frac{a^2+b^2+c^2}{a b c}\right)\)
Vector Algebra

87705 \(\overrightarrow{\mathbf{a}}, \overrightarrow{\mathrm{b}}, \overrightarrow{\mathrm{c}}\) are non-coplanar vectors. If the position vector of the point of intersection of the line \(\overrightarrow{\mathbf{r}}=\overrightarrow{\mathbf{a}}+\mathbf{2} \overrightarrow{\mathrm{b}}+\mathbf{p}(\overrightarrow{\mathbf{a}}-\mathbf{2} \mathbf{c})\) and the plane \(\overrightarrow{\mathbf{r}}=3 \overrightarrow{\mathbf{a}}-\mathrm{q}(\overrightarrow{\mathbf{c}}-\overrightarrow{\mathrm{b}})+K(\overrightarrow{\mathbf{a}}-\overrightarrow{\mathrm{b}}+\overrightarrow{\mathbf{c}})\) is \(\overrightarrow{\mathbf{r}}=\mathbf{x} \overrightarrow{\mathbf{a}}+\mathbf{y} \vec{b}+z \overrightarrow{\mathbf{c}}\), then \(x\) y \(z\)

1 -8
2 8
3 12
4 -12
Vector Algebra

87706 If \(\vec{a}, \vec{b}, \vec{c}\) are the position vectors of the points A, B, C respectively, then match the items of list-I with those of list-II.
| List-I |List-II|
|
|A. \(\vec{a} =2 \hat{i}+3 \hat{j}+4 \hat{k}\),\ltbr>\(\vec{b} =3 \hat{i}+4 \hat{j}+2 \hat{k}\),\ltbr>\(\vec{c} =4 \hat{i}+2 \hat{j}+3 \hat{k}\)|I. A, B, C are collinear|
|B. \(\overrightarrow{\mathbf{a}}=\hat{\mathbf{i}}+2 \hat{\mathbf{j}}+3 \hat{\mathbf{k}}\),\ltbr>\(\overrightarrow{\mathbf{b}}=3 \hat{\mathbf{i}}+4 \hat{\mathbf{j}}+7 \hat{\mathbf{k}}\),\ltbr>\(\overrightarrow{\mathbf{c}}=-3 \hat{\mathbf{i}}-2 \hat{\mathbf{j}}-5 \hat{\mathbf{k}}\)|II. \(\triangle \mathrm{ABC}\) is an isosceles triangle|
|C. \(\overrightarrow{\mathbf{a}}=2 \hat{\mathbf{i}}-\hat{\mathbf{j}}+\hat{\mathbf{k}}\),\ltbr>\(\overrightarrow{\mathbf{b}}=\hat{\mathbf{i}}-3 \hat{\mathbf{j}}-\mathbf{5} \hat{\mathbf{k}}\),\ltbr>\(\overrightarrow{\mathbf{c}}=-3 \hat{\mathbf{i}}-4 \hat{\mathbf{j}}-4 \hat{\mathbf{k}}\)|III. \(\triangle \mathrm{ABC}\) is a right angled triangle|
|D. \(\overrightarrow{\mathbf{a}} =\hat{\mathbf{i}}+\hat{\mathbf{j}}+\hat{\mathbf{k}}\),\ltbr>\(\overrightarrow{\mathbf{b}} =\hat{\mathbf{i}}+2 \hat{\mathbf{j}}+3 \hat{\mathbf{k}}\),\ltbr>\(\overrightarrow{\mathbf{c}} =2 \hat{\mathbf{i}}-\hat{\mathbf{j}}+\hat{\mathbf{k}}\)|IV. \(\triangle \text { ABC}\) is a right-angled triangle
| | V. \(\Delta \text { ABC is }\),equilateral, triangle|
The correct match is

1 A-I, B-IV, C-III, D-II
2 A-I, B-II, C-III, D-IV
3 A-V, B-I, C-IV, D-II
4 A-V, B-I, C-III, D-II
Vector Algebra

87707 If \(\vec{a}, \vec{b}, \vec{c}\) are three independent vectors and there exists a non zero scalar traid \((l, \mathrm{~m}, \mathrm{n})\) such that \(l(3 a+2 b+c)+\mathbf{m}(2 a+2 b+3 c)+\mathbf{n}(\mathbf{a}\) \(+2 b+5 c)=0\), then

1 \(l=\mathrm{m}=\mathrm{n}\)
2 \(l=\mathrm{n}\)
3 \(l=\mathrm{n}, \mathrm{m}+2 \mathrm{n}=0\)
4 \(\mathrm{m}+2 \mathrm{n}=0, l+\mathrm{n}=0\)
Vector Algebra

87703 If \(3 \hat{i}-5 \hat{j}+2 \hat{k}, 7 \hat{i}+2 \hat{j}-4 \hat{k}, \hat{i}-3 \hat{j}+4 \hat{k}\) and \(-7 \hat{\mathbf{i}}-17 \hat{\mathbf{j}}+16 \hat{\mathbf{k}}\) are position vectors of the points \(A, B, C\) and \(D\) respectively, then the angle between \(A B\) and \(C D\) is

1 0
2 \(\frac{\pi}{4}\)
3 \(\frac{\pi}{2}\)
4 \(\pi\)
Vector Algebra

87704 If \(a, b, c\) are distinct real numbers and \(P, Q, R\) are three points whose position vectors are respectively \(\quad \mathbf{a} \hat{i}+b \hat{j}+c \hat{k}, b \hat{i}+c \hat{j}+a \hat{k} \quad\) and \(\hat{\mathbf{i}}+\mathbf{a} \hat{\mathbf{j}}+\mathbf{b} \hat{\mathbf{k}}\), then \(\angle \mathrm{QPR}=\)

1 \(\cos ^{-1}(a+b+c)\)
2 \(\frac{\pi}{2}\)
3 \(\frac{\pi}{3}\)
4 \(\cos ^{-1}\left(\frac{a^2+b^2+c^2}{a b c}\right)\)
Vector Algebra

87705 \(\overrightarrow{\mathbf{a}}, \overrightarrow{\mathrm{b}}, \overrightarrow{\mathrm{c}}\) are non-coplanar vectors. If the position vector of the point of intersection of the line \(\overrightarrow{\mathbf{r}}=\overrightarrow{\mathbf{a}}+\mathbf{2} \overrightarrow{\mathrm{b}}+\mathbf{p}(\overrightarrow{\mathbf{a}}-\mathbf{2} \mathbf{c})\) and the plane \(\overrightarrow{\mathbf{r}}=3 \overrightarrow{\mathbf{a}}-\mathrm{q}(\overrightarrow{\mathbf{c}}-\overrightarrow{\mathrm{b}})+K(\overrightarrow{\mathbf{a}}-\overrightarrow{\mathrm{b}}+\overrightarrow{\mathbf{c}})\) is \(\overrightarrow{\mathbf{r}}=\mathbf{x} \overrightarrow{\mathbf{a}}+\mathbf{y} \vec{b}+z \overrightarrow{\mathbf{c}}\), then \(x\) y \(z\)

1 -8
2 8
3 12
4 -12
Vector Algebra

87706 If \(\vec{a}, \vec{b}, \vec{c}\) are the position vectors of the points A, B, C respectively, then match the items of list-I with those of list-II.
| List-I |List-II|
|
|A. \(\vec{a} =2 \hat{i}+3 \hat{j}+4 \hat{k}\),\ltbr>\(\vec{b} =3 \hat{i}+4 \hat{j}+2 \hat{k}\),\ltbr>\(\vec{c} =4 \hat{i}+2 \hat{j}+3 \hat{k}\)|I. A, B, C are collinear|
|B. \(\overrightarrow{\mathbf{a}}=\hat{\mathbf{i}}+2 \hat{\mathbf{j}}+3 \hat{\mathbf{k}}\),\ltbr>\(\overrightarrow{\mathbf{b}}=3 \hat{\mathbf{i}}+4 \hat{\mathbf{j}}+7 \hat{\mathbf{k}}\),\ltbr>\(\overrightarrow{\mathbf{c}}=-3 \hat{\mathbf{i}}-2 \hat{\mathbf{j}}-5 \hat{\mathbf{k}}\)|II. \(\triangle \mathrm{ABC}\) is an isosceles triangle|
|C. \(\overrightarrow{\mathbf{a}}=2 \hat{\mathbf{i}}-\hat{\mathbf{j}}+\hat{\mathbf{k}}\),\ltbr>\(\overrightarrow{\mathbf{b}}=\hat{\mathbf{i}}-3 \hat{\mathbf{j}}-\mathbf{5} \hat{\mathbf{k}}\),\ltbr>\(\overrightarrow{\mathbf{c}}=-3 \hat{\mathbf{i}}-4 \hat{\mathbf{j}}-4 \hat{\mathbf{k}}\)|III. \(\triangle \mathrm{ABC}\) is a right angled triangle|
|D. \(\overrightarrow{\mathbf{a}} =\hat{\mathbf{i}}+\hat{\mathbf{j}}+\hat{\mathbf{k}}\),\ltbr>\(\overrightarrow{\mathbf{b}} =\hat{\mathbf{i}}+2 \hat{\mathbf{j}}+3 \hat{\mathbf{k}}\),\ltbr>\(\overrightarrow{\mathbf{c}} =2 \hat{\mathbf{i}}-\hat{\mathbf{j}}+\hat{\mathbf{k}}\)|IV. \(\triangle \text { ABC}\) is a right-angled triangle
| | V. \(\Delta \text { ABC is }\),equilateral, triangle|
The correct match is

1 A-I, B-IV, C-III, D-II
2 A-I, B-II, C-III, D-IV
3 A-V, B-I, C-IV, D-II
4 A-V, B-I, C-III, D-II
Vector Algebra

87707 If \(\vec{a}, \vec{b}, \vec{c}\) are three independent vectors and there exists a non zero scalar traid \((l, \mathrm{~m}, \mathrm{n})\) such that \(l(3 a+2 b+c)+\mathbf{m}(2 a+2 b+3 c)+\mathbf{n}(\mathbf{a}\) \(+2 b+5 c)=0\), then

1 \(l=\mathrm{m}=\mathrm{n}\)
2 \(l=\mathrm{n}\)
3 \(l=\mathrm{n}, \mathrm{m}+2 \mathrm{n}=0\)
4 \(\mathrm{m}+2 \mathrm{n}=0, l+\mathrm{n}=0\)
Vector Algebra

87703 If \(3 \hat{i}-5 \hat{j}+2 \hat{k}, 7 \hat{i}+2 \hat{j}-4 \hat{k}, \hat{i}-3 \hat{j}+4 \hat{k}\) and \(-7 \hat{\mathbf{i}}-17 \hat{\mathbf{j}}+16 \hat{\mathbf{k}}\) are position vectors of the points \(A, B, C\) and \(D\) respectively, then the angle between \(A B\) and \(C D\) is

1 0
2 \(\frac{\pi}{4}\)
3 \(\frac{\pi}{2}\)
4 \(\pi\)
Vector Algebra

87704 If \(a, b, c\) are distinct real numbers and \(P, Q, R\) are three points whose position vectors are respectively \(\quad \mathbf{a} \hat{i}+b \hat{j}+c \hat{k}, b \hat{i}+c \hat{j}+a \hat{k} \quad\) and \(\hat{\mathbf{i}}+\mathbf{a} \hat{\mathbf{j}}+\mathbf{b} \hat{\mathbf{k}}\), then \(\angle \mathrm{QPR}=\)

1 \(\cos ^{-1}(a+b+c)\)
2 \(\frac{\pi}{2}\)
3 \(\frac{\pi}{3}\)
4 \(\cos ^{-1}\left(\frac{a^2+b^2+c^2}{a b c}\right)\)
Vector Algebra

87705 \(\overrightarrow{\mathbf{a}}, \overrightarrow{\mathrm{b}}, \overrightarrow{\mathrm{c}}\) are non-coplanar vectors. If the position vector of the point of intersection of the line \(\overrightarrow{\mathbf{r}}=\overrightarrow{\mathbf{a}}+\mathbf{2} \overrightarrow{\mathrm{b}}+\mathbf{p}(\overrightarrow{\mathbf{a}}-\mathbf{2} \mathbf{c})\) and the plane \(\overrightarrow{\mathbf{r}}=3 \overrightarrow{\mathbf{a}}-\mathrm{q}(\overrightarrow{\mathbf{c}}-\overrightarrow{\mathrm{b}})+K(\overrightarrow{\mathbf{a}}-\overrightarrow{\mathrm{b}}+\overrightarrow{\mathbf{c}})\) is \(\overrightarrow{\mathbf{r}}=\mathbf{x} \overrightarrow{\mathbf{a}}+\mathbf{y} \vec{b}+z \overrightarrow{\mathbf{c}}\), then \(x\) y \(z\)

1 -8
2 8
3 12
4 -12
Vector Algebra

87706 If \(\vec{a}, \vec{b}, \vec{c}\) are the position vectors of the points A, B, C respectively, then match the items of list-I with those of list-II.
| List-I |List-II|
|
|A. \(\vec{a} =2 \hat{i}+3 \hat{j}+4 \hat{k}\),\ltbr>\(\vec{b} =3 \hat{i}+4 \hat{j}+2 \hat{k}\),\ltbr>\(\vec{c} =4 \hat{i}+2 \hat{j}+3 \hat{k}\)|I. A, B, C are collinear|
|B. \(\overrightarrow{\mathbf{a}}=\hat{\mathbf{i}}+2 \hat{\mathbf{j}}+3 \hat{\mathbf{k}}\),\ltbr>\(\overrightarrow{\mathbf{b}}=3 \hat{\mathbf{i}}+4 \hat{\mathbf{j}}+7 \hat{\mathbf{k}}\),\ltbr>\(\overrightarrow{\mathbf{c}}=-3 \hat{\mathbf{i}}-2 \hat{\mathbf{j}}-5 \hat{\mathbf{k}}\)|II. \(\triangle \mathrm{ABC}\) is an isosceles triangle|
|C. \(\overrightarrow{\mathbf{a}}=2 \hat{\mathbf{i}}-\hat{\mathbf{j}}+\hat{\mathbf{k}}\),\ltbr>\(\overrightarrow{\mathbf{b}}=\hat{\mathbf{i}}-3 \hat{\mathbf{j}}-\mathbf{5} \hat{\mathbf{k}}\),\ltbr>\(\overrightarrow{\mathbf{c}}=-3 \hat{\mathbf{i}}-4 \hat{\mathbf{j}}-4 \hat{\mathbf{k}}\)|III. \(\triangle \mathrm{ABC}\) is a right angled triangle|
|D. \(\overrightarrow{\mathbf{a}} =\hat{\mathbf{i}}+\hat{\mathbf{j}}+\hat{\mathbf{k}}\),\ltbr>\(\overrightarrow{\mathbf{b}} =\hat{\mathbf{i}}+2 \hat{\mathbf{j}}+3 \hat{\mathbf{k}}\),\ltbr>\(\overrightarrow{\mathbf{c}} =2 \hat{\mathbf{i}}-\hat{\mathbf{j}}+\hat{\mathbf{k}}\)|IV. \(\triangle \text { ABC}\) is a right-angled triangle
| | V. \(\Delta \text { ABC is }\),equilateral, triangle|
The correct match is

1 A-I, B-IV, C-III, D-II
2 A-I, B-II, C-III, D-IV
3 A-V, B-I, C-IV, D-II
4 A-V, B-I, C-III, D-II
Vector Algebra

87707 If \(\vec{a}, \vec{b}, \vec{c}\) are three independent vectors and there exists a non zero scalar traid \((l, \mathrm{~m}, \mathrm{n})\) such that \(l(3 a+2 b+c)+\mathbf{m}(2 a+2 b+3 c)+\mathbf{n}(\mathbf{a}\) \(+2 b+5 c)=0\), then

1 \(l=\mathrm{m}=\mathrm{n}\)
2 \(l=\mathrm{n}\)
3 \(l=\mathrm{n}, \mathrm{m}+2 \mathrm{n}=0\)
4 \(\mathrm{m}+2 \mathrm{n}=0, l+\mathrm{n}=0\)