Homogeneous Differential Equation
Differential Equation

87481 If the curve \(y=y(x)\) is the solution of the differential equation \(2\left(x^{2}+x^{5 / 4}\right) d y-y(x+\) \(\left.x^{1 / 4}\right) d x=2 x^{9 / 4} d x, x>0\) which passes through the point \(\left(1,1-\frac{4}{3} \log _{e} 2\right)\), then the value of \(\mathbf{y}(16)\) is equal to

1 \(4\left(\frac{31}{3}+\frac{8}{3} \log _{\mathrm{e}} 3\right)\)
2 \(\left(\frac{31}{3}+\frac{8}{3} \log _{\mathrm{e}} 3\right)\)
3 \(4\left(\frac{31}{3}-\frac{8}{3} \log _{\mathrm{e}} 3\right)\)
4 \(\left(\frac{31}{3}-\frac{8}{3} \log _{\mathrm{e}} 3\right)\)
Differential Equation

87482 If a curve \(y=f(x)\), passing through the point (1, 2 ), is the solution of the differential equation, \(2 x^{2} d y=\left(2 x y+y^{2}\right) d x\), then \(f\left(\frac{1}{2}\right)\) is equal to

1 \(\frac{1}{1+\log _{\mathrm{e}} 2}\)
2 \(\frac{1}{1-\log _{\mathrm{e}} 2}\)
3 \(1+\log _{\mathrm{e}} 2\)
4 \(\frac{-1}{1+\log _{\mathrm{e}} 2}\)
Differential Equation

87483 The solution curve of the differential equation, \(\left(1+e^{-x}\right)\left(1+y^{2}\right) \frac{d y}{d x}=y^{2}\), which passes through the point \((0,1)\) is

1 \(\mathrm{y}^{2}+1=\mathrm{y}\left(\log _{\mathrm{e}}\left(\frac{1+\mathrm{e}^{-\mathrm{x}}}{2}\right)+2\right)\)
2 \(\mathrm{y}^{2}+1=\mathrm{y}\left(\log _{\mathrm{e}}\left(\frac{1+\mathrm{e}^{\mathrm{x}}}{2}\right)+2\right)\)
3 \(\mathrm{y}^{2}=1+\mathrm{y} \log _{\mathrm{e}}\left(\frac{1+\mathrm{e}^{\mathrm{x}}}{2}\right)\)
4 \(\mathrm{y}^{2}=1+\mathrm{y} \log _{\mathrm{e}}\left(\frac{1+\mathrm{e}^{-\mathrm{x}}}{2}\right)\)
Differential Equation

87484 If \(x^{3} d y+x y d x=x^{2} d y+2 y d x ; y(2)=e\) and \(x>1\), then \(y(4)\) is equal to

1 \(\frac{\sqrt{\mathrm{e}}}{2}\)
2 \(\frac{3}{2}+\sqrt{\mathrm{e}}\)
3 \(\frac{3}{2} \sqrt{\mathrm{e}}\)
4 \(\frac{1}{2}+\sqrt{\mathrm{e}}\)
Differential Equation

87481 If the curve \(y=y(x)\) is the solution of the differential equation \(2\left(x^{2}+x^{5 / 4}\right) d y-y(x+\) \(\left.x^{1 / 4}\right) d x=2 x^{9 / 4} d x, x>0\) which passes through the point \(\left(1,1-\frac{4}{3} \log _{e} 2\right)\), then the value of \(\mathbf{y}(16)\) is equal to

1 \(4\left(\frac{31}{3}+\frac{8}{3} \log _{\mathrm{e}} 3\right)\)
2 \(\left(\frac{31}{3}+\frac{8}{3} \log _{\mathrm{e}} 3\right)\)
3 \(4\left(\frac{31}{3}-\frac{8}{3} \log _{\mathrm{e}} 3\right)\)
4 \(\left(\frac{31}{3}-\frac{8}{3} \log _{\mathrm{e}} 3\right)\)
Differential Equation

87482 If a curve \(y=f(x)\), passing through the point (1, 2 ), is the solution of the differential equation, \(2 x^{2} d y=\left(2 x y+y^{2}\right) d x\), then \(f\left(\frac{1}{2}\right)\) is equal to

1 \(\frac{1}{1+\log _{\mathrm{e}} 2}\)
2 \(\frac{1}{1-\log _{\mathrm{e}} 2}\)
3 \(1+\log _{\mathrm{e}} 2\)
4 \(\frac{-1}{1+\log _{\mathrm{e}} 2}\)
Differential Equation

87483 The solution curve of the differential equation, \(\left(1+e^{-x}\right)\left(1+y^{2}\right) \frac{d y}{d x}=y^{2}\), which passes through the point \((0,1)\) is

1 \(\mathrm{y}^{2}+1=\mathrm{y}\left(\log _{\mathrm{e}}\left(\frac{1+\mathrm{e}^{-\mathrm{x}}}{2}\right)+2\right)\)
2 \(\mathrm{y}^{2}+1=\mathrm{y}\left(\log _{\mathrm{e}}\left(\frac{1+\mathrm{e}^{\mathrm{x}}}{2}\right)+2\right)\)
3 \(\mathrm{y}^{2}=1+\mathrm{y} \log _{\mathrm{e}}\left(\frac{1+\mathrm{e}^{\mathrm{x}}}{2}\right)\)
4 \(\mathrm{y}^{2}=1+\mathrm{y} \log _{\mathrm{e}}\left(\frac{1+\mathrm{e}^{-\mathrm{x}}}{2}\right)\)
Differential Equation

87484 If \(x^{3} d y+x y d x=x^{2} d y+2 y d x ; y(2)=e\) and \(x>1\), then \(y(4)\) is equal to

1 \(\frac{\sqrt{\mathrm{e}}}{2}\)
2 \(\frac{3}{2}+\sqrt{\mathrm{e}}\)
3 \(\frac{3}{2} \sqrt{\mathrm{e}}\)
4 \(\frac{1}{2}+\sqrt{\mathrm{e}}\)
Differential Equation

87481 If the curve \(y=y(x)\) is the solution of the differential equation \(2\left(x^{2}+x^{5 / 4}\right) d y-y(x+\) \(\left.x^{1 / 4}\right) d x=2 x^{9 / 4} d x, x>0\) which passes through the point \(\left(1,1-\frac{4}{3} \log _{e} 2\right)\), then the value of \(\mathbf{y}(16)\) is equal to

1 \(4\left(\frac{31}{3}+\frac{8}{3} \log _{\mathrm{e}} 3\right)\)
2 \(\left(\frac{31}{3}+\frac{8}{3} \log _{\mathrm{e}} 3\right)\)
3 \(4\left(\frac{31}{3}-\frac{8}{3} \log _{\mathrm{e}} 3\right)\)
4 \(\left(\frac{31}{3}-\frac{8}{3} \log _{\mathrm{e}} 3\right)\)
Differential Equation

87482 If a curve \(y=f(x)\), passing through the point (1, 2 ), is the solution of the differential equation, \(2 x^{2} d y=\left(2 x y+y^{2}\right) d x\), then \(f\left(\frac{1}{2}\right)\) is equal to

1 \(\frac{1}{1+\log _{\mathrm{e}} 2}\)
2 \(\frac{1}{1-\log _{\mathrm{e}} 2}\)
3 \(1+\log _{\mathrm{e}} 2\)
4 \(\frac{-1}{1+\log _{\mathrm{e}} 2}\)
Differential Equation

87483 The solution curve of the differential equation, \(\left(1+e^{-x}\right)\left(1+y^{2}\right) \frac{d y}{d x}=y^{2}\), which passes through the point \((0,1)\) is

1 \(\mathrm{y}^{2}+1=\mathrm{y}\left(\log _{\mathrm{e}}\left(\frac{1+\mathrm{e}^{-\mathrm{x}}}{2}\right)+2\right)\)
2 \(\mathrm{y}^{2}+1=\mathrm{y}\left(\log _{\mathrm{e}}\left(\frac{1+\mathrm{e}^{\mathrm{x}}}{2}\right)+2\right)\)
3 \(\mathrm{y}^{2}=1+\mathrm{y} \log _{\mathrm{e}}\left(\frac{1+\mathrm{e}^{\mathrm{x}}}{2}\right)\)
4 \(\mathrm{y}^{2}=1+\mathrm{y} \log _{\mathrm{e}}\left(\frac{1+\mathrm{e}^{-\mathrm{x}}}{2}\right)\)
Differential Equation

87484 If \(x^{3} d y+x y d x=x^{2} d y+2 y d x ; y(2)=e\) and \(x>1\), then \(y(4)\) is equal to

1 \(\frac{\sqrt{\mathrm{e}}}{2}\)
2 \(\frac{3}{2}+\sqrt{\mathrm{e}}\)
3 \(\frac{3}{2} \sqrt{\mathrm{e}}\)
4 \(\frac{1}{2}+\sqrt{\mathrm{e}}\)
Differential Equation

87481 If the curve \(y=y(x)\) is the solution of the differential equation \(2\left(x^{2}+x^{5 / 4}\right) d y-y(x+\) \(\left.x^{1 / 4}\right) d x=2 x^{9 / 4} d x, x>0\) which passes through the point \(\left(1,1-\frac{4}{3} \log _{e} 2\right)\), then the value of \(\mathbf{y}(16)\) is equal to

1 \(4\left(\frac{31}{3}+\frac{8}{3} \log _{\mathrm{e}} 3\right)\)
2 \(\left(\frac{31}{3}+\frac{8}{3} \log _{\mathrm{e}} 3\right)\)
3 \(4\left(\frac{31}{3}-\frac{8}{3} \log _{\mathrm{e}} 3\right)\)
4 \(\left(\frac{31}{3}-\frac{8}{3} \log _{\mathrm{e}} 3\right)\)
Differential Equation

87482 If a curve \(y=f(x)\), passing through the point (1, 2 ), is the solution of the differential equation, \(2 x^{2} d y=\left(2 x y+y^{2}\right) d x\), then \(f\left(\frac{1}{2}\right)\) is equal to

1 \(\frac{1}{1+\log _{\mathrm{e}} 2}\)
2 \(\frac{1}{1-\log _{\mathrm{e}} 2}\)
3 \(1+\log _{\mathrm{e}} 2\)
4 \(\frac{-1}{1+\log _{\mathrm{e}} 2}\)
Differential Equation

87483 The solution curve of the differential equation, \(\left(1+e^{-x}\right)\left(1+y^{2}\right) \frac{d y}{d x}=y^{2}\), which passes through the point \((0,1)\) is

1 \(\mathrm{y}^{2}+1=\mathrm{y}\left(\log _{\mathrm{e}}\left(\frac{1+\mathrm{e}^{-\mathrm{x}}}{2}\right)+2\right)\)
2 \(\mathrm{y}^{2}+1=\mathrm{y}\left(\log _{\mathrm{e}}\left(\frac{1+\mathrm{e}^{\mathrm{x}}}{2}\right)+2\right)\)
3 \(\mathrm{y}^{2}=1+\mathrm{y} \log _{\mathrm{e}}\left(\frac{1+\mathrm{e}^{\mathrm{x}}}{2}\right)\)
4 \(\mathrm{y}^{2}=1+\mathrm{y} \log _{\mathrm{e}}\left(\frac{1+\mathrm{e}^{-\mathrm{x}}}{2}\right)\)
Differential Equation

87484 If \(x^{3} d y+x y d x=x^{2} d y+2 y d x ; y(2)=e\) and \(x>1\), then \(y(4)\) is equal to

1 \(\frac{\sqrt{\mathrm{e}}}{2}\)
2 \(\frac{3}{2}+\sqrt{\mathrm{e}}\)
3 \(\frac{3}{2} \sqrt{\mathrm{e}}\)
4 \(\frac{1}{2}+\sqrt{\mathrm{e}}\)