Homogeneous Differential Equation
Differential Equation

87477 Let \(y=y(x)\) be the solution of the differential equation,
\(\sin x \frac{d y}{d x}+y \cos x=4 x, x \in(0, \pi)\). If \(y\left(\frac{\pi}{2}\right)=0\),
then \(y\left(\frac{\pi}{6}\right)\) is equal to

1 \(\frac{4}{9 \sqrt{3}} \pi^{2}\)
2 \(\pi^{2}\)
3 \(-\frac{8}{9} \pi^{2}\)
4 \(-\frac{4}{9} \pi^{2}\)
Differential Equation

87478 Let \(y=y(x)\) be the solution of the differential equation, \(\quad\left(x^{2}+1\right)^{2} \frac{d y}{d x}+2 x\left(x^{2}+1\right) y=1\) such that \(y(0)=0\). If \(\sqrt{\mathrm{a}} y(1)=\frac{\pi}{32}\), then the value of ' \(a\) ' is

1 \(\frac{1}{4}\)
2 \(\frac{1}{2}\)
3 1
4 \(\frac{1}{16}\)
Differential Equation

87492 The integrating factor of the differential equation \(\left(1+x^{2}\right) d t=\left(\tan ^{-1} x-t\right) d x\) is

1 \(\mathrm{e}^{\frac{\left(\tan ^{-1} \mathrm{x}\right)^{2}}{2}}\)
2 \(-\mathrm{e}^{\frac{\left(\tan ^{-1} \mathrm{x}\right)^{2}}{2}}\)
3 \(-e^{\tan ^{-1}} x\)
4 \(e^{\tan ^{-1}} \mathrm{x}\)
Differential Equation

87479 Let \(y=y(x)\) be the solution of the differential equation,
\(\frac{d y}{d x}+y \tan x=2 x+x^{2} \tan x, x \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right), \quad\) such that \(y(0)=1\). Then

1 \(\mathrm{y}^{\prime}\left(\frac{\pi}{4}\right)-\mathrm{y}^{\prime}\left(-\frac{\pi}{4}\right)=\pi-\sqrt{2}\)
2 \(y^{\prime}\left(\frac{\pi}{4}\right)+y^{\prime}\left(-\frac{\pi}{4}\right)=-\sqrt{2}\)
3 \(\mathrm{y}\left(\frac{\pi}{4}\right)+\mathrm{y}\left(-\frac{\pi}{4}\right)=\frac{\pi^{2}}{2}+2\)
4 \(\mathrm{y}\left(\frac{\pi}{4}\right)-\mathrm{y}\left(-\frac{\pi}{4}\right)=\sqrt{2}\)
Differential Equation

87480 If \(\cos x \frac{d y}{d x}-y \sin x=6 x,\left(0\lt x\lt \frac{x}{2}\right)\) and \(y\left(\frac{\pi}{3}\right)=0\), then \(y\left(\frac{\pi}{6}\right)\) is equal to

1 \(\frac{\pi^{2}}{2 \sqrt{3}}\)
2 \(-\frac{\pi^{2}}{2 \sqrt{3}}\)
3 \(-\frac{\pi^{2}}{4 \sqrt{3}}\)
4 \(-\frac{\pi^{2}}{2}\)
Differential Equation

87477 Let \(y=y(x)\) be the solution of the differential equation,
\(\sin x \frac{d y}{d x}+y \cos x=4 x, x \in(0, \pi)\). If \(y\left(\frac{\pi}{2}\right)=0\),
then \(y\left(\frac{\pi}{6}\right)\) is equal to

1 \(\frac{4}{9 \sqrt{3}} \pi^{2}\)
2 \(\pi^{2}\)
3 \(-\frac{8}{9} \pi^{2}\)
4 \(-\frac{4}{9} \pi^{2}\)
Differential Equation

87478 Let \(y=y(x)\) be the solution of the differential equation, \(\quad\left(x^{2}+1\right)^{2} \frac{d y}{d x}+2 x\left(x^{2}+1\right) y=1\) such that \(y(0)=0\). If \(\sqrt{\mathrm{a}} y(1)=\frac{\pi}{32}\), then the value of ' \(a\) ' is

1 \(\frac{1}{4}\)
2 \(\frac{1}{2}\)
3 1
4 \(\frac{1}{16}\)
Differential Equation

87492 The integrating factor of the differential equation \(\left(1+x^{2}\right) d t=\left(\tan ^{-1} x-t\right) d x\) is

1 \(\mathrm{e}^{\frac{\left(\tan ^{-1} \mathrm{x}\right)^{2}}{2}}\)
2 \(-\mathrm{e}^{\frac{\left(\tan ^{-1} \mathrm{x}\right)^{2}}{2}}\)
3 \(-e^{\tan ^{-1}} x\)
4 \(e^{\tan ^{-1}} \mathrm{x}\)
Differential Equation

87479 Let \(y=y(x)\) be the solution of the differential equation,
\(\frac{d y}{d x}+y \tan x=2 x+x^{2} \tan x, x \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right), \quad\) such that \(y(0)=1\). Then

1 \(\mathrm{y}^{\prime}\left(\frac{\pi}{4}\right)-\mathrm{y}^{\prime}\left(-\frac{\pi}{4}\right)=\pi-\sqrt{2}\)
2 \(y^{\prime}\left(\frac{\pi}{4}\right)+y^{\prime}\left(-\frac{\pi}{4}\right)=-\sqrt{2}\)
3 \(\mathrm{y}\left(\frac{\pi}{4}\right)+\mathrm{y}\left(-\frac{\pi}{4}\right)=\frac{\pi^{2}}{2}+2\)
4 \(\mathrm{y}\left(\frac{\pi}{4}\right)-\mathrm{y}\left(-\frac{\pi}{4}\right)=\sqrt{2}\)
Differential Equation

87480 If \(\cos x \frac{d y}{d x}-y \sin x=6 x,\left(0\lt x\lt \frac{x}{2}\right)\) and \(y\left(\frac{\pi}{3}\right)=0\), then \(y\left(\frac{\pi}{6}\right)\) is equal to

1 \(\frac{\pi^{2}}{2 \sqrt{3}}\)
2 \(-\frac{\pi^{2}}{2 \sqrt{3}}\)
3 \(-\frac{\pi^{2}}{4 \sqrt{3}}\)
4 \(-\frac{\pi^{2}}{2}\)
Differential Equation

87477 Let \(y=y(x)\) be the solution of the differential equation,
\(\sin x \frac{d y}{d x}+y \cos x=4 x, x \in(0, \pi)\). If \(y\left(\frac{\pi}{2}\right)=0\),
then \(y\left(\frac{\pi}{6}\right)\) is equal to

1 \(\frac{4}{9 \sqrt{3}} \pi^{2}\)
2 \(\pi^{2}\)
3 \(-\frac{8}{9} \pi^{2}\)
4 \(-\frac{4}{9} \pi^{2}\)
Differential Equation

87478 Let \(y=y(x)\) be the solution of the differential equation, \(\quad\left(x^{2}+1\right)^{2} \frac{d y}{d x}+2 x\left(x^{2}+1\right) y=1\) such that \(y(0)=0\). If \(\sqrt{\mathrm{a}} y(1)=\frac{\pi}{32}\), then the value of ' \(a\) ' is

1 \(\frac{1}{4}\)
2 \(\frac{1}{2}\)
3 1
4 \(\frac{1}{16}\)
Differential Equation

87492 The integrating factor of the differential equation \(\left(1+x^{2}\right) d t=\left(\tan ^{-1} x-t\right) d x\) is

1 \(\mathrm{e}^{\frac{\left(\tan ^{-1} \mathrm{x}\right)^{2}}{2}}\)
2 \(-\mathrm{e}^{\frac{\left(\tan ^{-1} \mathrm{x}\right)^{2}}{2}}\)
3 \(-e^{\tan ^{-1}} x\)
4 \(e^{\tan ^{-1}} \mathrm{x}\)
Differential Equation

87479 Let \(y=y(x)\) be the solution of the differential equation,
\(\frac{d y}{d x}+y \tan x=2 x+x^{2} \tan x, x \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right), \quad\) such that \(y(0)=1\). Then

1 \(\mathrm{y}^{\prime}\left(\frac{\pi}{4}\right)-\mathrm{y}^{\prime}\left(-\frac{\pi}{4}\right)=\pi-\sqrt{2}\)
2 \(y^{\prime}\left(\frac{\pi}{4}\right)+y^{\prime}\left(-\frac{\pi}{4}\right)=-\sqrt{2}\)
3 \(\mathrm{y}\left(\frac{\pi}{4}\right)+\mathrm{y}\left(-\frac{\pi}{4}\right)=\frac{\pi^{2}}{2}+2\)
4 \(\mathrm{y}\left(\frac{\pi}{4}\right)-\mathrm{y}\left(-\frac{\pi}{4}\right)=\sqrt{2}\)
Differential Equation

87480 If \(\cos x \frac{d y}{d x}-y \sin x=6 x,\left(0\lt x\lt \frac{x}{2}\right)\) and \(y\left(\frac{\pi}{3}\right)=0\), then \(y\left(\frac{\pi}{6}\right)\) is equal to

1 \(\frac{\pi^{2}}{2 \sqrt{3}}\)
2 \(-\frac{\pi^{2}}{2 \sqrt{3}}\)
3 \(-\frac{\pi^{2}}{4 \sqrt{3}}\)
4 \(-\frac{\pi^{2}}{2}\)
Differential Equation

87477 Let \(y=y(x)\) be the solution of the differential equation,
\(\sin x \frac{d y}{d x}+y \cos x=4 x, x \in(0, \pi)\). If \(y\left(\frac{\pi}{2}\right)=0\),
then \(y\left(\frac{\pi}{6}\right)\) is equal to

1 \(\frac{4}{9 \sqrt{3}} \pi^{2}\)
2 \(\pi^{2}\)
3 \(-\frac{8}{9} \pi^{2}\)
4 \(-\frac{4}{9} \pi^{2}\)
Differential Equation

87478 Let \(y=y(x)\) be the solution of the differential equation, \(\quad\left(x^{2}+1\right)^{2} \frac{d y}{d x}+2 x\left(x^{2}+1\right) y=1\) such that \(y(0)=0\). If \(\sqrt{\mathrm{a}} y(1)=\frac{\pi}{32}\), then the value of ' \(a\) ' is

1 \(\frac{1}{4}\)
2 \(\frac{1}{2}\)
3 1
4 \(\frac{1}{16}\)
Differential Equation

87492 The integrating factor of the differential equation \(\left(1+x^{2}\right) d t=\left(\tan ^{-1} x-t\right) d x\) is

1 \(\mathrm{e}^{\frac{\left(\tan ^{-1} \mathrm{x}\right)^{2}}{2}}\)
2 \(-\mathrm{e}^{\frac{\left(\tan ^{-1} \mathrm{x}\right)^{2}}{2}}\)
3 \(-e^{\tan ^{-1}} x\)
4 \(e^{\tan ^{-1}} \mathrm{x}\)
Differential Equation

87479 Let \(y=y(x)\) be the solution of the differential equation,
\(\frac{d y}{d x}+y \tan x=2 x+x^{2} \tan x, x \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right), \quad\) such that \(y(0)=1\). Then

1 \(\mathrm{y}^{\prime}\left(\frac{\pi}{4}\right)-\mathrm{y}^{\prime}\left(-\frac{\pi}{4}\right)=\pi-\sqrt{2}\)
2 \(y^{\prime}\left(\frac{\pi}{4}\right)+y^{\prime}\left(-\frac{\pi}{4}\right)=-\sqrt{2}\)
3 \(\mathrm{y}\left(\frac{\pi}{4}\right)+\mathrm{y}\left(-\frac{\pi}{4}\right)=\frac{\pi^{2}}{2}+2\)
4 \(\mathrm{y}\left(\frac{\pi}{4}\right)-\mathrm{y}\left(-\frac{\pi}{4}\right)=\sqrt{2}\)
Differential Equation

87480 If \(\cos x \frac{d y}{d x}-y \sin x=6 x,\left(0\lt x\lt \frac{x}{2}\right)\) and \(y\left(\frac{\pi}{3}\right)=0\), then \(y\left(\frac{\pi}{6}\right)\) is equal to

1 \(\frac{\pi^{2}}{2 \sqrt{3}}\)
2 \(-\frac{\pi^{2}}{2 \sqrt{3}}\)
3 \(-\frac{\pi^{2}}{4 \sqrt{3}}\)
4 \(-\frac{\pi^{2}}{2}\)
Differential Equation

87477 Let \(y=y(x)\) be the solution of the differential equation,
\(\sin x \frac{d y}{d x}+y \cos x=4 x, x \in(0, \pi)\). If \(y\left(\frac{\pi}{2}\right)=0\),
then \(y\left(\frac{\pi}{6}\right)\) is equal to

1 \(\frac{4}{9 \sqrt{3}} \pi^{2}\)
2 \(\pi^{2}\)
3 \(-\frac{8}{9} \pi^{2}\)
4 \(-\frac{4}{9} \pi^{2}\)
Differential Equation

87478 Let \(y=y(x)\) be the solution of the differential equation, \(\quad\left(x^{2}+1\right)^{2} \frac{d y}{d x}+2 x\left(x^{2}+1\right) y=1\) such that \(y(0)=0\). If \(\sqrt{\mathrm{a}} y(1)=\frac{\pi}{32}\), then the value of ' \(a\) ' is

1 \(\frac{1}{4}\)
2 \(\frac{1}{2}\)
3 1
4 \(\frac{1}{16}\)
Differential Equation

87492 The integrating factor of the differential equation \(\left(1+x^{2}\right) d t=\left(\tan ^{-1} x-t\right) d x\) is

1 \(\mathrm{e}^{\frac{\left(\tan ^{-1} \mathrm{x}\right)^{2}}{2}}\)
2 \(-\mathrm{e}^{\frac{\left(\tan ^{-1} \mathrm{x}\right)^{2}}{2}}\)
3 \(-e^{\tan ^{-1}} x\)
4 \(e^{\tan ^{-1}} \mathrm{x}\)
Differential Equation

87479 Let \(y=y(x)\) be the solution of the differential equation,
\(\frac{d y}{d x}+y \tan x=2 x+x^{2} \tan x, x \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right), \quad\) such that \(y(0)=1\). Then

1 \(\mathrm{y}^{\prime}\left(\frac{\pi}{4}\right)-\mathrm{y}^{\prime}\left(-\frac{\pi}{4}\right)=\pi-\sqrt{2}\)
2 \(y^{\prime}\left(\frac{\pi}{4}\right)+y^{\prime}\left(-\frac{\pi}{4}\right)=-\sqrt{2}\)
3 \(\mathrm{y}\left(\frac{\pi}{4}\right)+\mathrm{y}\left(-\frac{\pi}{4}\right)=\frac{\pi^{2}}{2}+2\)
4 \(\mathrm{y}\left(\frac{\pi}{4}\right)-\mathrm{y}\left(-\frac{\pi}{4}\right)=\sqrt{2}\)
Differential Equation

87480 If \(\cos x \frac{d y}{d x}-y \sin x=6 x,\left(0\lt x\lt \frac{x}{2}\right)\) and \(y\left(\frac{\pi}{3}\right)=0\), then \(y\left(\frac{\pi}{6}\right)\) is equal to

1 \(\frac{\pi^{2}}{2 \sqrt{3}}\)
2 \(-\frac{\pi^{2}}{2 \sqrt{3}}\)
3 \(-\frac{\pi^{2}}{4 \sqrt{3}}\)
4 \(-\frac{\pi^{2}}{2}\)