Integrating Factor
Differential Equation

87280 Let \(y=y\) (x) be the solution of the differential equation \((x+1) y^{\prime}-y=e^{3 x}(x+1)^{2}\), with \(y(0)=\frac{1}{3}\).
Then, the point \(x=-\frac{4}{3}\) for the curve \(y=y(x)\) is:

1 not a critical point
2 a point of local minima
3 a point of local maxima
4 a point of inflection
Differential Equation

87281 Let \(y=y(x)\) be the solution curve of the differential equation \(\frac{d y}{d x}+\frac{1}{x^{2}-1} y=\left(\frac{x-1}{x+1}\right)^{\frac{1}{2}} x>\) 1 passing through the point \(\left(2, \sqrt{\frac{1}{3}}\right)\). Then \(\sqrt{7} \mathrm{y}(8)\) is equal to

1 \(11+6 \log _{\mathrm{e}} 3\)
2 19
3 \(12-2 \log _{\mathrm{e}} 3\)
4 \(19-6 \log _{\mathrm{e}} 3\)
Differential Equation

87282 The differential equation of the family of circle passing through the points \((0,2)\) and \((0,-2)\) is

1 \(2 x y \frac{d y}{d x}+\left(x^{2}-y^{2}+4\right)=0\)
2 \(2 x y \frac{d y}{d x}+\left(x^{2}+y^{2}-4\right)=0\)
3 \(2 x y \frac{d y}{d x}+\left(y^{2}-x^{2}+4\right)=0\)
4 \(2 x y \frac{d y}{d x}-\left(x^{2}-y^{2}+4\right)=0\)
Differential Equation

87286 The equation of a curve passing through the point \((0,1)\), given that the slope of the tangent to the curve at any point \((x, y)\) is equal to the sum of the \(x\)-coordinate and the product of \(x\) and \(y\) coordinates at that point is

1 \(y=1-2 \mathrm{e}^{\left(\mathrm{x}^{2} / 2\right)}\)
2 \(y=-1+2 \mathrm{e}^{\left(\mathrm{x}^{2} / 2\right)}\)
3 \(y=-1-2 \mathrm{e}^{\left(\mathrm{x}^{2} / 2\right)}\)
4 \(y=1+2 \mathrm{e}^{\left(\mathrm{x}^{2} / 2\right)}\)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Differential Equation

87280 Let \(y=y\) (x) be the solution of the differential equation \((x+1) y^{\prime}-y=e^{3 x}(x+1)^{2}\), with \(y(0)=\frac{1}{3}\).
Then, the point \(x=-\frac{4}{3}\) for the curve \(y=y(x)\) is:

1 not a critical point
2 a point of local minima
3 a point of local maxima
4 a point of inflection
Differential Equation

87281 Let \(y=y(x)\) be the solution curve of the differential equation \(\frac{d y}{d x}+\frac{1}{x^{2}-1} y=\left(\frac{x-1}{x+1}\right)^{\frac{1}{2}} x>\) 1 passing through the point \(\left(2, \sqrt{\frac{1}{3}}\right)\). Then \(\sqrt{7} \mathrm{y}(8)\) is equal to

1 \(11+6 \log _{\mathrm{e}} 3\)
2 19
3 \(12-2 \log _{\mathrm{e}} 3\)
4 \(19-6 \log _{\mathrm{e}} 3\)
Differential Equation

87282 The differential equation of the family of circle passing through the points \((0,2)\) and \((0,-2)\) is

1 \(2 x y \frac{d y}{d x}+\left(x^{2}-y^{2}+4\right)=0\)
2 \(2 x y \frac{d y}{d x}+\left(x^{2}+y^{2}-4\right)=0\)
3 \(2 x y \frac{d y}{d x}+\left(y^{2}-x^{2}+4\right)=0\)
4 \(2 x y \frac{d y}{d x}-\left(x^{2}-y^{2}+4\right)=0\)
Differential Equation

87286 The equation of a curve passing through the point \((0,1)\), given that the slope of the tangent to the curve at any point \((x, y)\) is equal to the sum of the \(x\)-coordinate and the product of \(x\) and \(y\) coordinates at that point is

1 \(y=1-2 \mathrm{e}^{\left(\mathrm{x}^{2} / 2\right)}\)
2 \(y=-1+2 \mathrm{e}^{\left(\mathrm{x}^{2} / 2\right)}\)
3 \(y=-1-2 \mathrm{e}^{\left(\mathrm{x}^{2} / 2\right)}\)
4 \(y=1+2 \mathrm{e}^{\left(\mathrm{x}^{2} / 2\right)}\)
Differential Equation

87280 Let \(y=y\) (x) be the solution of the differential equation \((x+1) y^{\prime}-y=e^{3 x}(x+1)^{2}\), with \(y(0)=\frac{1}{3}\).
Then, the point \(x=-\frac{4}{3}\) for the curve \(y=y(x)\) is:

1 not a critical point
2 a point of local minima
3 a point of local maxima
4 a point of inflection
Differential Equation

87281 Let \(y=y(x)\) be the solution curve of the differential equation \(\frac{d y}{d x}+\frac{1}{x^{2}-1} y=\left(\frac{x-1}{x+1}\right)^{\frac{1}{2}} x>\) 1 passing through the point \(\left(2, \sqrt{\frac{1}{3}}\right)\). Then \(\sqrt{7} \mathrm{y}(8)\) is equal to

1 \(11+6 \log _{\mathrm{e}} 3\)
2 19
3 \(12-2 \log _{\mathrm{e}} 3\)
4 \(19-6 \log _{\mathrm{e}} 3\)
Differential Equation

87282 The differential equation of the family of circle passing through the points \((0,2)\) and \((0,-2)\) is

1 \(2 x y \frac{d y}{d x}+\left(x^{2}-y^{2}+4\right)=0\)
2 \(2 x y \frac{d y}{d x}+\left(x^{2}+y^{2}-4\right)=0\)
3 \(2 x y \frac{d y}{d x}+\left(y^{2}-x^{2}+4\right)=0\)
4 \(2 x y \frac{d y}{d x}-\left(x^{2}-y^{2}+4\right)=0\)
Differential Equation

87286 The equation of a curve passing through the point \((0,1)\), given that the slope of the tangent to the curve at any point \((x, y)\) is equal to the sum of the \(x\)-coordinate and the product of \(x\) and \(y\) coordinates at that point is

1 \(y=1-2 \mathrm{e}^{\left(\mathrm{x}^{2} / 2\right)}\)
2 \(y=-1+2 \mathrm{e}^{\left(\mathrm{x}^{2} / 2\right)}\)
3 \(y=-1-2 \mathrm{e}^{\left(\mathrm{x}^{2} / 2\right)}\)
4 \(y=1+2 \mathrm{e}^{\left(\mathrm{x}^{2} / 2\right)}\)
Differential Equation

87280 Let \(y=y\) (x) be the solution of the differential equation \((x+1) y^{\prime}-y=e^{3 x}(x+1)^{2}\), with \(y(0)=\frac{1}{3}\).
Then, the point \(x=-\frac{4}{3}\) for the curve \(y=y(x)\) is:

1 not a critical point
2 a point of local minima
3 a point of local maxima
4 a point of inflection
Differential Equation

87281 Let \(y=y(x)\) be the solution curve of the differential equation \(\frac{d y}{d x}+\frac{1}{x^{2}-1} y=\left(\frac{x-1}{x+1}\right)^{\frac{1}{2}} x>\) 1 passing through the point \(\left(2, \sqrt{\frac{1}{3}}\right)\). Then \(\sqrt{7} \mathrm{y}(8)\) is equal to

1 \(11+6 \log _{\mathrm{e}} 3\)
2 19
3 \(12-2 \log _{\mathrm{e}} 3\)
4 \(19-6 \log _{\mathrm{e}} 3\)
Differential Equation

87282 The differential equation of the family of circle passing through the points \((0,2)\) and \((0,-2)\) is

1 \(2 x y \frac{d y}{d x}+\left(x^{2}-y^{2}+4\right)=0\)
2 \(2 x y \frac{d y}{d x}+\left(x^{2}+y^{2}-4\right)=0\)
3 \(2 x y \frac{d y}{d x}+\left(y^{2}-x^{2}+4\right)=0\)
4 \(2 x y \frac{d y}{d x}-\left(x^{2}-y^{2}+4\right)=0\)
Differential Equation

87286 The equation of a curve passing through the point \((0,1)\), given that the slope of the tangent to the curve at any point \((x, y)\) is equal to the sum of the \(x\)-coordinate and the product of \(x\) and \(y\) coordinates at that point is

1 \(y=1-2 \mathrm{e}^{\left(\mathrm{x}^{2} / 2\right)}\)
2 \(y=-1+2 \mathrm{e}^{\left(\mathrm{x}^{2} / 2\right)}\)
3 \(y=-1-2 \mathrm{e}^{\left(\mathrm{x}^{2} / 2\right)}\)
4 \(y=1+2 \mathrm{e}^{\left(\mathrm{x}^{2} / 2\right)}\)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here