Integrating Factor
Differential Equation

87216 If \(x \cdot \frac{d y}{d x}+y=x \cdot \frac{f(x y)}{f^{\prime}(x y)}\), then \(f(x y)\) is equal to

1 \(k \cdot e^{\frac{x^{2}}{2}}\)
2 k.e \(\mathrm{y}^{\mathrm{y}^{2 / 2}}\)
3 \(k \cdot e^{x^{2}}\)
4 \(k . e^{\frac{x y}{2}}\)
Differential Equation

87217 The solution of the differential equation
\(\frac{d y}{d x}=(4 x+y+1)^{2}\), is

1 \((4 x+y+1)=\tan (2 x+C)\)
2 \((4 x+y+1)^{2}=2 \tan (2 x+C)\)
3 \((4 x+y+1)^{3}=3 \tan (2 x+C)\)
4 \((4 \mathrm{x}+\mathrm{y}+1)=2 \tan (2 \mathrm{x}+\mathrm{C})\)
Differential Equation

87218 The general solution of the differential equation \(\frac{d^{2} y}{d x^{2}}+2 \frac{d y}{d x}+y=2 e^{3 x}\) is given by

1 \(y=\left(c_{1}+c_{2} x\right) e^{x}+\frac{e^{3 x}}{8}\)
2 \(y=\left(c_{1}+c_{2} x\right) e^{-x}+\frac{e^{-3 x}}{8}\)
3 \(y=\left(c_{1}+c_{2} x\right) e^{-x}+\frac{e^{3 x}}{8}\)
4 \(y=\left(c_{1}+c_{2} x\right) e^{x}+\frac{e^{-3 x}}{8}\)
Differential Equation

87219 The differential equation of the system of all circles of radius \(r\) in the \(\mathrm{XY}\) plane is

1 \(\left[1+\left(\frac{d y}{d x}\right)^{3}\right]^{2}=r^{2}\left(\frac{d^{2} y}{d x^{2}}\right)^{2}\)
2 \(\left[1+\left(\frac{d y}{d x}\right)^{3}\right]^{2}=r^{2}\left(\frac{d^{2} y}{d x^{2}}\right)^{3}\)
3 \(\left[1+\left(\frac{d y}{d x}\right)^{2}\right]^{3}=r^{2}\left(\frac{d^{2} y}{d x^{2}}\right)^{2}\)
4 \(\left[1+\left(\frac{d y}{d x}\right)^{2}\right]^{3}=r^{2}\left(\frac{d^{2} y}{d x^{2}}\right)^{3}\)
Differential Equation

87216 If \(x \cdot \frac{d y}{d x}+y=x \cdot \frac{f(x y)}{f^{\prime}(x y)}\), then \(f(x y)\) is equal to

1 \(k \cdot e^{\frac{x^{2}}{2}}\)
2 k.e \(\mathrm{y}^{\mathrm{y}^{2 / 2}}\)
3 \(k \cdot e^{x^{2}}\)
4 \(k . e^{\frac{x y}{2}}\)
Differential Equation

87217 The solution of the differential equation
\(\frac{d y}{d x}=(4 x+y+1)^{2}\), is

1 \((4 x+y+1)=\tan (2 x+C)\)
2 \((4 x+y+1)^{2}=2 \tan (2 x+C)\)
3 \((4 x+y+1)^{3}=3 \tan (2 x+C)\)
4 \((4 \mathrm{x}+\mathrm{y}+1)=2 \tan (2 \mathrm{x}+\mathrm{C})\)
Differential Equation

87218 The general solution of the differential equation \(\frac{d^{2} y}{d x^{2}}+2 \frac{d y}{d x}+y=2 e^{3 x}\) is given by

1 \(y=\left(c_{1}+c_{2} x\right) e^{x}+\frac{e^{3 x}}{8}\)
2 \(y=\left(c_{1}+c_{2} x\right) e^{-x}+\frac{e^{-3 x}}{8}\)
3 \(y=\left(c_{1}+c_{2} x\right) e^{-x}+\frac{e^{3 x}}{8}\)
4 \(y=\left(c_{1}+c_{2} x\right) e^{x}+\frac{e^{-3 x}}{8}\)
Differential Equation

87219 The differential equation of the system of all circles of radius \(r\) in the \(\mathrm{XY}\) plane is

1 \(\left[1+\left(\frac{d y}{d x}\right)^{3}\right]^{2}=r^{2}\left(\frac{d^{2} y}{d x^{2}}\right)^{2}\)
2 \(\left[1+\left(\frac{d y}{d x}\right)^{3}\right]^{2}=r^{2}\left(\frac{d^{2} y}{d x^{2}}\right)^{3}\)
3 \(\left[1+\left(\frac{d y}{d x}\right)^{2}\right]^{3}=r^{2}\left(\frac{d^{2} y}{d x^{2}}\right)^{2}\)
4 \(\left[1+\left(\frac{d y}{d x}\right)^{2}\right]^{3}=r^{2}\left(\frac{d^{2} y}{d x^{2}}\right)^{3}\)
Differential Equation

87216 If \(x \cdot \frac{d y}{d x}+y=x \cdot \frac{f(x y)}{f^{\prime}(x y)}\), then \(f(x y)\) is equal to

1 \(k \cdot e^{\frac{x^{2}}{2}}\)
2 k.e \(\mathrm{y}^{\mathrm{y}^{2 / 2}}\)
3 \(k \cdot e^{x^{2}}\)
4 \(k . e^{\frac{x y}{2}}\)
Differential Equation

87217 The solution of the differential equation
\(\frac{d y}{d x}=(4 x+y+1)^{2}\), is

1 \((4 x+y+1)=\tan (2 x+C)\)
2 \((4 x+y+1)^{2}=2 \tan (2 x+C)\)
3 \((4 x+y+1)^{3}=3 \tan (2 x+C)\)
4 \((4 \mathrm{x}+\mathrm{y}+1)=2 \tan (2 \mathrm{x}+\mathrm{C})\)
Differential Equation

87218 The general solution of the differential equation \(\frac{d^{2} y}{d x^{2}}+2 \frac{d y}{d x}+y=2 e^{3 x}\) is given by

1 \(y=\left(c_{1}+c_{2} x\right) e^{x}+\frac{e^{3 x}}{8}\)
2 \(y=\left(c_{1}+c_{2} x\right) e^{-x}+\frac{e^{-3 x}}{8}\)
3 \(y=\left(c_{1}+c_{2} x\right) e^{-x}+\frac{e^{3 x}}{8}\)
4 \(y=\left(c_{1}+c_{2} x\right) e^{x}+\frac{e^{-3 x}}{8}\)
Differential Equation

87219 The differential equation of the system of all circles of radius \(r\) in the \(\mathrm{XY}\) plane is

1 \(\left[1+\left(\frac{d y}{d x}\right)^{3}\right]^{2}=r^{2}\left(\frac{d^{2} y}{d x^{2}}\right)^{2}\)
2 \(\left[1+\left(\frac{d y}{d x}\right)^{3}\right]^{2}=r^{2}\left(\frac{d^{2} y}{d x^{2}}\right)^{3}\)
3 \(\left[1+\left(\frac{d y}{d x}\right)^{2}\right]^{3}=r^{2}\left(\frac{d^{2} y}{d x^{2}}\right)^{2}\)
4 \(\left[1+\left(\frac{d y}{d x}\right)^{2}\right]^{3}=r^{2}\left(\frac{d^{2} y}{d x^{2}}\right)^{3}\)
Differential Equation

87216 If \(x \cdot \frac{d y}{d x}+y=x \cdot \frac{f(x y)}{f^{\prime}(x y)}\), then \(f(x y)\) is equal to

1 \(k \cdot e^{\frac{x^{2}}{2}}\)
2 k.e \(\mathrm{y}^{\mathrm{y}^{2 / 2}}\)
3 \(k \cdot e^{x^{2}}\)
4 \(k . e^{\frac{x y}{2}}\)
Differential Equation

87217 The solution of the differential equation
\(\frac{d y}{d x}=(4 x+y+1)^{2}\), is

1 \((4 x+y+1)=\tan (2 x+C)\)
2 \((4 x+y+1)^{2}=2 \tan (2 x+C)\)
3 \((4 x+y+1)^{3}=3 \tan (2 x+C)\)
4 \((4 \mathrm{x}+\mathrm{y}+1)=2 \tan (2 \mathrm{x}+\mathrm{C})\)
Differential Equation

87218 The general solution of the differential equation \(\frac{d^{2} y}{d x^{2}}+2 \frac{d y}{d x}+y=2 e^{3 x}\) is given by

1 \(y=\left(c_{1}+c_{2} x\right) e^{x}+\frac{e^{3 x}}{8}\)
2 \(y=\left(c_{1}+c_{2} x\right) e^{-x}+\frac{e^{-3 x}}{8}\)
3 \(y=\left(c_{1}+c_{2} x\right) e^{-x}+\frac{e^{3 x}}{8}\)
4 \(y=\left(c_{1}+c_{2} x\right) e^{x}+\frac{e^{-3 x}}{8}\)
Differential Equation

87219 The differential equation of the system of all circles of radius \(r\) in the \(\mathrm{XY}\) plane is

1 \(\left[1+\left(\frac{d y}{d x}\right)^{3}\right]^{2}=r^{2}\left(\frac{d^{2} y}{d x^{2}}\right)^{2}\)
2 \(\left[1+\left(\frac{d y}{d x}\right)^{3}\right]^{2}=r^{2}\left(\frac{d^{2} y}{d x^{2}}\right)^{3}\)
3 \(\left[1+\left(\frac{d y}{d x}\right)^{2}\right]^{3}=r^{2}\left(\frac{d^{2} y}{d x^{2}}\right)^{2}\)
4 \(\left[1+\left(\frac{d y}{d x}\right)^{2}\right]^{3}=r^{2}\left(\frac{d^{2} y}{d x^{2}}\right)^{3}\)