Integrating Factor
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Differential Equation

87199 What is the solution of \(\frac{d y}{d x}+2 y=1\) satisfying \(y\)
(0) \(=0\) ?

1 \(y=\frac{1-\mathrm{e}^{-2 \mathrm{x}}}{2}\)
2 \(y=\frac{1+\mathrm{e}^{-2 \mathrm{x}}}{2}\)
3 \(y=1+e^{x}\)
4 \(y=\frac{1+\mathrm{e}^{\mathrm{x}}}{2}\)
Differential Equation

87200 The solution to the differential equation \(\frac{d y}{d x}=\frac{y f^{\prime}(x)-y^{2}}{f(x)}\) where \(f(x)\) is a given function is

1 \(f(x)=y(x+c)\)
2 \(f(x)=c x y\)
3 \(f(x)=c(x+y)\)
4 \(y f(x)=c x\)
Differential Equation

87205 The solution of
\((x+y)^{2}\left(x \frac{d y}{d x}+y\right)=x y\left(1+\frac{d y}{d x}\right)\) is

1 \(\log (x y)=-\frac{1}{x+y}+C\)
2 \(\log \left(\frac{x}{y}\right)=-\frac{1}{x+y}+C\)
3 \(\log (x y)=\frac{1}{x+y}+C\)
4 None of these
Differential Equation

87206 The differential equation of \(y=\mathbf{a e}^{\mathbf{b x + c}}\) is

1 \(y_{2}=y_{1}+y\)
2 \(\mathrm{y}_{2}^{2}=\mathrm{y} \mathrm{y}_{1}\)
3 \(y_{1}^{2}=y_{2}\)
4 \(\mathrm{y}^{2}=\mathrm{y}_{1} \mathrm{y}_{2}\)
Differential Equation

87199 What is the solution of \(\frac{d y}{d x}+2 y=1\) satisfying \(y\)
(0) \(=0\) ?

1 \(y=\frac{1-\mathrm{e}^{-2 \mathrm{x}}}{2}\)
2 \(y=\frac{1+\mathrm{e}^{-2 \mathrm{x}}}{2}\)
3 \(y=1+e^{x}\)
4 \(y=\frac{1+\mathrm{e}^{\mathrm{x}}}{2}\)
Differential Equation

87200 The solution to the differential equation \(\frac{d y}{d x}=\frac{y f^{\prime}(x)-y^{2}}{f(x)}\) where \(f(x)\) is a given function is

1 \(f(x)=y(x+c)\)
2 \(f(x)=c x y\)
3 \(f(x)=c(x+y)\)
4 \(y f(x)=c x\)
Differential Equation

87205 The solution of
\((x+y)^{2}\left(x \frac{d y}{d x}+y\right)=x y\left(1+\frac{d y}{d x}\right)\) is

1 \(\log (x y)=-\frac{1}{x+y}+C\)
2 \(\log \left(\frac{x}{y}\right)=-\frac{1}{x+y}+C\)
3 \(\log (x y)=\frac{1}{x+y}+C\)
4 None of these
Differential Equation

87206 The differential equation of \(y=\mathbf{a e}^{\mathbf{b x + c}}\) is

1 \(y_{2}=y_{1}+y\)
2 \(\mathrm{y}_{2}^{2}=\mathrm{y} \mathrm{y}_{1}\)
3 \(y_{1}^{2}=y_{2}\)
4 \(\mathrm{y}^{2}=\mathrm{y}_{1} \mathrm{y}_{2}\)
Differential Equation

87199 What is the solution of \(\frac{d y}{d x}+2 y=1\) satisfying \(y\)
(0) \(=0\) ?

1 \(y=\frac{1-\mathrm{e}^{-2 \mathrm{x}}}{2}\)
2 \(y=\frac{1+\mathrm{e}^{-2 \mathrm{x}}}{2}\)
3 \(y=1+e^{x}\)
4 \(y=\frac{1+\mathrm{e}^{\mathrm{x}}}{2}\)
Differential Equation

87200 The solution to the differential equation \(\frac{d y}{d x}=\frac{y f^{\prime}(x)-y^{2}}{f(x)}\) where \(f(x)\) is a given function is

1 \(f(x)=y(x+c)\)
2 \(f(x)=c x y\)
3 \(f(x)=c(x+y)\)
4 \(y f(x)=c x\)
Differential Equation

87205 The solution of
\((x+y)^{2}\left(x \frac{d y}{d x}+y\right)=x y\left(1+\frac{d y}{d x}\right)\) is

1 \(\log (x y)=-\frac{1}{x+y}+C\)
2 \(\log \left(\frac{x}{y}\right)=-\frac{1}{x+y}+C\)
3 \(\log (x y)=\frac{1}{x+y}+C\)
4 None of these
Differential Equation

87206 The differential equation of \(y=\mathbf{a e}^{\mathbf{b x + c}}\) is

1 \(y_{2}=y_{1}+y\)
2 \(\mathrm{y}_{2}^{2}=\mathrm{y} \mathrm{y}_{1}\)
3 \(y_{1}^{2}=y_{2}\)
4 \(\mathrm{y}^{2}=\mathrm{y}_{1} \mathrm{y}_{2}\)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Differential Equation

87199 What is the solution of \(\frac{d y}{d x}+2 y=1\) satisfying \(y\)
(0) \(=0\) ?

1 \(y=\frac{1-\mathrm{e}^{-2 \mathrm{x}}}{2}\)
2 \(y=\frac{1+\mathrm{e}^{-2 \mathrm{x}}}{2}\)
3 \(y=1+e^{x}\)
4 \(y=\frac{1+\mathrm{e}^{\mathrm{x}}}{2}\)
Differential Equation

87200 The solution to the differential equation \(\frac{d y}{d x}=\frac{y f^{\prime}(x)-y^{2}}{f(x)}\) where \(f(x)\) is a given function is

1 \(f(x)=y(x+c)\)
2 \(f(x)=c x y\)
3 \(f(x)=c(x+y)\)
4 \(y f(x)=c x\)
Differential Equation

87205 The solution of
\((x+y)^{2}\left(x \frac{d y}{d x}+y\right)=x y\left(1+\frac{d y}{d x}\right)\) is

1 \(\log (x y)=-\frac{1}{x+y}+C\)
2 \(\log \left(\frac{x}{y}\right)=-\frac{1}{x+y}+C\)
3 \(\log (x y)=\frac{1}{x+y}+C\)
4 None of these
Differential Equation

87206 The differential equation of \(y=\mathbf{a e}^{\mathbf{b x + c}}\) is

1 \(y_{2}=y_{1}+y\)
2 \(\mathrm{y}_{2}^{2}=\mathrm{y} \mathrm{y}_{1}\)
3 \(y_{1}^{2}=y_{2}\)
4 \(\mathrm{y}^{2}=\mathrm{y}_{1} \mathrm{y}_{2}\)