87069 Let \(\mathrm{f}:[-1,2] \rightarrow(0, \infty)\) be a continuous function such that \(\mathbf{f}(\mathbf{x})=\mathbf{f}(\mathbf{1}-\mathbf{x}), \forall \mathbf{x} \in[-\mathbf{1}, \mathbf{2}]\). If \(R_{1}=\int_{-1}^{2} x f(x) d x\) and \(R_{2}\) is the area of the region bounded by \(y=f(x), x=-1, x=2\) and the \(X\) axis. Then
87069 Let \(\mathrm{f}:[-1,2] \rightarrow(0, \infty)\) be a continuous function such that \(\mathbf{f}(\mathbf{x})=\mathbf{f}(\mathbf{1}-\mathbf{x}), \forall \mathbf{x} \in[-\mathbf{1}, \mathbf{2}]\). If \(R_{1}=\int_{-1}^{2} x f(x) d x\) and \(R_{2}\) is the area of the region bounded by \(y=f(x), x=-1, x=2\) and the \(X\) axis. Then