Determining Areas of Region Bounded by Simple Curve in Standard Form
Application of the Integrals

86990 The area of the region bounded by the parabola \((y-2)^{2}=(x-1)\), the tangent to the parabola at the point \((2,3)\) and the \(X\)-axis is

1 3
2 6
3 9
4 12
Application of the Integrals

86992 The area of the curve \(x^{2}+y^{2}=r^{2}\) is

1 \(4 \pi \mathrm{a}^{2}\)
2 \(\pi r^{2}\)
3 \(\frac{\pi \mathrm{a}^{2}}{2}\)
4 \(2 \pi \mathrm{a}^{2}\)
Application of the Integrals

86993 The area bounded by the two parabolas \(y^{2}=x\) and \(x^{2}=y\) is given by

1 1
2 \(\frac{2}{3}\)
3 \(\frac{1}{3}\)
4 \(\frac{1}{2}\)
Application of the Integrals

86994 The area of the smaller region enclosed by the curve \(y^{2}=8 x+4\) and \(x^{2}+y^{2}+4 \sqrt{3 x}-4=0\) is equal to

1 \(\frac{1}{3}(2-12 \sqrt{3}+8 \pi)\)
2 \(\frac{1}{3}(2-12 \sqrt{3}+6 \pi)\)
3 \(\frac{1}{3}(4-12 \sqrt{3}+8 \pi)\)
4 \(\frac{1}{3}(4-12 \sqrt{3}+6 \pi)\)
Application of the Integrals

86995 Area of the region \(\left\{(x, y): x^{2}+(y-2)^{2} \leq 4, x^{2} \geq\right.\) \(2 y\}\) is

1 \(2 \pi-\frac{16}{3}\)
2 \(\pi-\frac{8}{3}\)
3 \(\pi+\frac{8}{3}\)
4 \(2 \pi+\frac{16}{3}\)
Application of the Integrals

86990 The area of the region bounded by the parabola \((y-2)^{2}=(x-1)\), the tangent to the parabola at the point \((2,3)\) and the \(X\)-axis is

1 3
2 6
3 9
4 12
Application of the Integrals

86992 The area of the curve \(x^{2}+y^{2}=r^{2}\) is

1 \(4 \pi \mathrm{a}^{2}\)
2 \(\pi r^{2}\)
3 \(\frac{\pi \mathrm{a}^{2}}{2}\)
4 \(2 \pi \mathrm{a}^{2}\)
Application of the Integrals

86993 The area bounded by the two parabolas \(y^{2}=x\) and \(x^{2}=y\) is given by

1 1
2 \(\frac{2}{3}\)
3 \(\frac{1}{3}\)
4 \(\frac{1}{2}\)
Application of the Integrals

86994 The area of the smaller region enclosed by the curve \(y^{2}=8 x+4\) and \(x^{2}+y^{2}+4 \sqrt{3 x}-4=0\) is equal to

1 \(\frac{1}{3}(2-12 \sqrt{3}+8 \pi)\)
2 \(\frac{1}{3}(2-12 \sqrt{3}+6 \pi)\)
3 \(\frac{1}{3}(4-12 \sqrt{3}+8 \pi)\)
4 \(\frac{1}{3}(4-12 \sqrt{3}+6 \pi)\)
Application of the Integrals

86995 Area of the region \(\left\{(x, y): x^{2}+(y-2)^{2} \leq 4, x^{2} \geq\right.\) \(2 y\}\) is

1 \(2 \pi-\frac{16}{3}\)
2 \(\pi-\frac{8}{3}\)
3 \(\pi+\frac{8}{3}\)
4 \(2 \pi+\frac{16}{3}\)
Application of the Integrals

86990 The area of the region bounded by the parabola \((y-2)^{2}=(x-1)\), the tangent to the parabola at the point \((2,3)\) and the \(X\)-axis is

1 3
2 6
3 9
4 12
Application of the Integrals

86992 The area of the curve \(x^{2}+y^{2}=r^{2}\) is

1 \(4 \pi \mathrm{a}^{2}\)
2 \(\pi r^{2}\)
3 \(\frac{\pi \mathrm{a}^{2}}{2}\)
4 \(2 \pi \mathrm{a}^{2}\)
Application of the Integrals

86993 The area bounded by the two parabolas \(y^{2}=x\) and \(x^{2}=y\) is given by

1 1
2 \(\frac{2}{3}\)
3 \(\frac{1}{3}\)
4 \(\frac{1}{2}\)
Application of the Integrals

86994 The area of the smaller region enclosed by the curve \(y^{2}=8 x+4\) and \(x^{2}+y^{2}+4 \sqrt{3 x}-4=0\) is equal to

1 \(\frac{1}{3}(2-12 \sqrt{3}+8 \pi)\)
2 \(\frac{1}{3}(2-12 \sqrt{3}+6 \pi)\)
3 \(\frac{1}{3}(4-12 \sqrt{3}+8 \pi)\)
4 \(\frac{1}{3}(4-12 \sqrt{3}+6 \pi)\)
Application of the Integrals

86995 Area of the region \(\left\{(x, y): x^{2}+(y-2)^{2} \leq 4, x^{2} \geq\right.\) \(2 y\}\) is

1 \(2 \pi-\frac{16}{3}\)
2 \(\pi-\frac{8}{3}\)
3 \(\pi+\frac{8}{3}\)
4 \(2 \pi+\frac{16}{3}\)
Application of the Integrals

86990 The area of the region bounded by the parabola \((y-2)^{2}=(x-1)\), the tangent to the parabola at the point \((2,3)\) and the \(X\)-axis is

1 3
2 6
3 9
4 12
Application of the Integrals

86992 The area of the curve \(x^{2}+y^{2}=r^{2}\) is

1 \(4 \pi \mathrm{a}^{2}\)
2 \(\pi r^{2}\)
3 \(\frac{\pi \mathrm{a}^{2}}{2}\)
4 \(2 \pi \mathrm{a}^{2}\)
Application of the Integrals

86993 The area bounded by the two parabolas \(y^{2}=x\) and \(x^{2}=y\) is given by

1 1
2 \(\frac{2}{3}\)
3 \(\frac{1}{3}\)
4 \(\frac{1}{2}\)
Application of the Integrals

86994 The area of the smaller region enclosed by the curve \(y^{2}=8 x+4\) and \(x^{2}+y^{2}+4 \sqrt{3 x}-4=0\) is equal to

1 \(\frac{1}{3}(2-12 \sqrt{3}+8 \pi)\)
2 \(\frac{1}{3}(2-12 \sqrt{3}+6 \pi)\)
3 \(\frac{1}{3}(4-12 \sqrt{3}+8 \pi)\)
4 \(\frac{1}{3}(4-12 \sqrt{3}+6 \pi)\)
Application of the Integrals

86995 Area of the region \(\left\{(x, y): x^{2}+(y-2)^{2} \leq 4, x^{2} \geq\right.\) \(2 y\}\) is

1 \(2 \pi-\frac{16}{3}\)
2 \(\pi-\frac{8}{3}\)
3 \(\pi+\frac{8}{3}\)
4 \(2 \pi+\frac{16}{3}\)
Application of the Integrals

86990 The area of the region bounded by the parabola \((y-2)^{2}=(x-1)\), the tangent to the parabola at the point \((2,3)\) and the \(X\)-axis is

1 3
2 6
3 9
4 12
Application of the Integrals

86992 The area of the curve \(x^{2}+y^{2}=r^{2}\) is

1 \(4 \pi \mathrm{a}^{2}\)
2 \(\pi r^{2}\)
3 \(\frac{\pi \mathrm{a}^{2}}{2}\)
4 \(2 \pi \mathrm{a}^{2}\)
Application of the Integrals

86993 The area bounded by the two parabolas \(y^{2}=x\) and \(x^{2}=y\) is given by

1 1
2 \(\frac{2}{3}\)
3 \(\frac{1}{3}\)
4 \(\frac{1}{2}\)
Application of the Integrals

86994 The area of the smaller region enclosed by the curve \(y^{2}=8 x+4\) and \(x^{2}+y^{2}+4 \sqrt{3 x}-4=0\) is equal to

1 \(\frac{1}{3}(2-12 \sqrt{3}+8 \pi)\)
2 \(\frac{1}{3}(2-12 \sqrt{3}+6 \pi)\)
3 \(\frac{1}{3}(4-12 \sqrt{3}+8 \pi)\)
4 \(\frac{1}{3}(4-12 \sqrt{3}+6 \pi)\)
Application of the Integrals

86995 Area of the region \(\left\{(x, y): x^{2}+(y-2)^{2} \leq 4, x^{2} \geq\right.\) \(2 y\}\) is

1 \(2 \pi-\frac{16}{3}\)
2 \(\pi-\frac{8}{3}\)
3 \(\pi+\frac{8}{3}\)
4 \(2 \pi+\frac{16}{3}\)