86786
Let \(f\) be a non-negative function in \([0,1]\) and twice differentiable in \((0,1)\). If
\(\int_{0}^{\mathrm{x}} \sqrt{1-\left(\mathrm{f}^{\prime}(\mathrm{t})\right)^{2}} \mathrm{dt}=\int_{0}^{\mathrm{x}} \mathrm{f}(\mathrm{t}) \mathrm{dt}, 0 \leq \mathrm{x} \leq 1\)
and \(f(0)=0\), then \(\lim _{x \rightarrow 0} \frac{1}{x^{2}} \int_{0}^{x} f(t) d t\)
86786
Let \(f\) be a non-negative function in \([0,1]\) and twice differentiable in \((0,1)\). If
\(\int_{0}^{\mathrm{x}} \sqrt{1-\left(\mathrm{f}^{\prime}(\mathrm{t})\right)^{2}} \mathrm{dt}=\int_{0}^{\mathrm{x}} \mathrm{f}(\mathrm{t}) \mathrm{dt}, 0 \leq \mathrm{x} \leq 1\)
and \(f(0)=0\), then \(\lim _{x \rightarrow 0} \frac{1}{x^{2}} \int_{0}^{x} f(t) d t\)
86786
Let \(f\) be a non-negative function in \([0,1]\) and twice differentiable in \((0,1)\). If
\(\int_{0}^{\mathrm{x}} \sqrt{1-\left(\mathrm{f}^{\prime}(\mathrm{t})\right)^{2}} \mathrm{dt}=\int_{0}^{\mathrm{x}} \mathrm{f}(\mathrm{t}) \mathrm{dt}, 0 \leq \mathrm{x} \leq 1\)
and \(f(0)=0\), then \(\lim _{x \rightarrow 0} \frac{1}{x^{2}} \int_{0}^{x} f(t) d t\)
86786
Let \(f\) be a non-negative function in \([0,1]\) and twice differentiable in \((0,1)\). If
\(\int_{0}^{\mathrm{x}} \sqrt{1-\left(\mathrm{f}^{\prime}(\mathrm{t})\right)^{2}} \mathrm{dt}=\int_{0}^{\mathrm{x}} \mathrm{f}(\mathrm{t}) \mathrm{dt}, 0 \leq \mathrm{x} \leq 1\)
and \(f(0)=0\), then \(\lim _{x \rightarrow 0} \frac{1}{x^{2}} \int_{0}^{x} f(t) d t\)