86780
Given that \(\int_{0}^{\infty} \frac{\mathbf{x}^{2}}{\left(\mathbf{x}^{2}+\mathbf{a}^{2}\right)\left(\mathrm{x}^{2}+\mathbf{b}^{2}\right)\left(\mathrm{x}^{2}+\mathbf{c}^{2}\right)}\)
\(=\frac{\pi}{2(a+b)(b+c)(c+a)}, \text { then } \int_{0}^{\infty} \frac{d x}{\left(x^{2}+4\right)\left(x^{2}+9\right)} \text { is }\)
86780
Given that \(\int_{0}^{\infty} \frac{\mathbf{x}^{2}}{\left(\mathbf{x}^{2}+\mathbf{a}^{2}\right)\left(\mathrm{x}^{2}+\mathbf{b}^{2}\right)\left(\mathrm{x}^{2}+\mathbf{c}^{2}\right)}\)
\(=\frac{\pi}{2(a+b)(b+c)(c+a)}, \text { then } \int_{0}^{\infty} \frac{d x}{\left(x^{2}+4\right)\left(x^{2}+9\right)} \text { is }\)
86780
Given that \(\int_{0}^{\infty} \frac{\mathbf{x}^{2}}{\left(\mathbf{x}^{2}+\mathbf{a}^{2}\right)\left(\mathrm{x}^{2}+\mathbf{b}^{2}\right)\left(\mathrm{x}^{2}+\mathbf{c}^{2}\right)}\)
\(=\frac{\pi}{2(a+b)(b+c)(c+a)}, \text { then } \int_{0}^{\infty} \frac{d x}{\left(x^{2}+4\right)\left(x^{2}+9\right)} \text { is }\)