Leibnitz's Rules
Integral Calculus

86770 The intercepts on \(x\)-axis made by tangents to the curve, \(y=\int_{0}^{x}|t| d t, x \in R\), which are parallel to the line \(y=2 x\), are equal to

1 \(\pm 2\)
2 \(\pm 3\)
3 \(\pm 4\)
4 \(\pm 1\)
Integral Calculus

86771 If \(\int_{-1}^{4} f(x) d x=4\) and \(\int_{2}^{4}(3-f(x)) d x=7\),
\(\text { then } \int_{-1}^{2} f(x) d x=\)

1 -2
2 3
3 4
4 5
Integral Calculus

86772 If \(\int_{0}^{b-c} f(x+c) d x=a \int_{b}^{c} f(x) d x\), then \(a=\)

1 0
2 -1
3 2
4 \(b-c\)
Integral Calculus

86769 The value of the integral
\(\int_{0}^{\pi / 2}\left(\sin ^{100} x-\cos ^{100} x\right) d x \text { is }\)

1 \(\frac{1}{100}\)
2 \(\frac{100 !}{(100)^{100}}\)
3 \(\frac{\pi}{100}\)
4 0
Integral Calculus

86764 \(\int_{0}^{1} \frac{d x}{e^{x}+e^{-x}}\) is equal to

1 \(\frac{\pi}{4}-\tan ^{-1}\) (e)
2 \(\tan ^{-1}(\mathrm{e})-\frac{\pi}{4}\)
3 \(\tan ^{-1}(\mathrm{e})+\frac{\pi}{4}\)
4 \(\tan ^{-1}(\mathrm{e})\)
Integral Calculus

86770 The intercepts on \(x\)-axis made by tangents to the curve, \(y=\int_{0}^{x}|t| d t, x \in R\), which are parallel to the line \(y=2 x\), are equal to

1 \(\pm 2\)
2 \(\pm 3\)
3 \(\pm 4\)
4 \(\pm 1\)
Integral Calculus

86771 If \(\int_{-1}^{4} f(x) d x=4\) and \(\int_{2}^{4}(3-f(x)) d x=7\),
\(\text { then } \int_{-1}^{2} f(x) d x=\)

1 -2
2 3
3 4
4 5
Integral Calculus

86772 If \(\int_{0}^{b-c} f(x+c) d x=a \int_{b}^{c} f(x) d x\), then \(a=\)

1 0
2 -1
3 2
4 \(b-c\)
Integral Calculus

86769 The value of the integral
\(\int_{0}^{\pi / 2}\left(\sin ^{100} x-\cos ^{100} x\right) d x \text { is }\)

1 \(\frac{1}{100}\)
2 \(\frac{100 !}{(100)^{100}}\)
3 \(\frac{\pi}{100}\)
4 0
Integral Calculus

86764 \(\int_{0}^{1} \frac{d x}{e^{x}+e^{-x}}\) is equal to

1 \(\frac{\pi}{4}-\tan ^{-1}\) (e)
2 \(\tan ^{-1}(\mathrm{e})-\frac{\pi}{4}\)
3 \(\tan ^{-1}(\mathrm{e})+\frac{\pi}{4}\)
4 \(\tan ^{-1}(\mathrm{e})\)
Integral Calculus

86770 The intercepts on \(x\)-axis made by tangents to the curve, \(y=\int_{0}^{x}|t| d t, x \in R\), which are parallel to the line \(y=2 x\), are equal to

1 \(\pm 2\)
2 \(\pm 3\)
3 \(\pm 4\)
4 \(\pm 1\)
Integral Calculus

86771 If \(\int_{-1}^{4} f(x) d x=4\) and \(\int_{2}^{4}(3-f(x)) d x=7\),
\(\text { then } \int_{-1}^{2} f(x) d x=\)

1 -2
2 3
3 4
4 5
Integral Calculus

86772 If \(\int_{0}^{b-c} f(x+c) d x=a \int_{b}^{c} f(x) d x\), then \(a=\)

1 0
2 -1
3 2
4 \(b-c\)
Integral Calculus

86769 The value of the integral
\(\int_{0}^{\pi / 2}\left(\sin ^{100} x-\cos ^{100} x\right) d x \text { is }\)

1 \(\frac{1}{100}\)
2 \(\frac{100 !}{(100)^{100}}\)
3 \(\frac{\pi}{100}\)
4 0
Integral Calculus

86764 \(\int_{0}^{1} \frac{d x}{e^{x}+e^{-x}}\) is equal to

1 \(\frac{\pi}{4}-\tan ^{-1}\) (e)
2 \(\tan ^{-1}(\mathrm{e})-\frac{\pi}{4}\)
3 \(\tan ^{-1}(\mathrm{e})+\frac{\pi}{4}\)
4 \(\tan ^{-1}(\mathrm{e})\)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Integral Calculus

86770 The intercepts on \(x\)-axis made by tangents to the curve, \(y=\int_{0}^{x}|t| d t, x \in R\), which are parallel to the line \(y=2 x\), are equal to

1 \(\pm 2\)
2 \(\pm 3\)
3 \(\pm 4\)
4 \(\pm 1\)
Integral Calculus

86771 If \(\int_{-1}^{4} f(x) d x=4\) and \(\int_{2}^{4}(3-f(x)) d x=7\),
\(\text { then } \int_{-1}^{2} f(x) d x=\)

1 -2
2 3
3 4
4 5
Integral Calculus

86772 If \(\int_{0}^{b-c} f(x+c) d x=a \int_{b}^{c} f(x) d x\), then \(a=\)

1 0
2 -1
3 2
4 \(b-c\)
Integral Calculus

86769 The value of the integral
\(\int_{0}^{\pi / 2}\left(\sin ^{100} x-\cos ^{100} x\right) d x \text { is }\)

1 \(\frac{1}{100}\)
2 \(\frac{100 !}{(100)^{100}}\)
3 \(\frac{\pi}{100}\)
4 0
Integral Calculus

86764 \(\int_{0}^{1} \frac{d x}{e^{x}+e^{-x}}\) is equal to

1 \(\frac{\pi}{4}-\tan ^{-1}\) (e)
2 \(\tan ^{-1}(\mathrm{e})-\frac{\pi}{4}\)
3 \(\tan ^{-1}(\mathrm{e})+\frac{\pi}{4}\)
4 \(\tan ^{-1}(\mathrm{e})\)
Integral Calculus

86770 The intercepts on \(x\)-axis made by tangents to the curve, \(y=\int_{0}^{x}|t| d t, x \in R\), which are parallel to the line \(y=2 x\), are equal to

1 \(\pm 2\)
2 \(\pm 3\)
3 \(\pm 4\)
4 \(\pm 1\)
Integral Calculus

86771 If \(\int_{-1}^{4} f(x) d x=4\) and \(\int_{2}^{4}(3-f(x)) d x=7\),
\(\text { then } \int_{-1}^{2} f(x) d x=\)

1 -2
2 3
3 4
4 5
Integral Calculus

86772 If \(\int_{0}^{b-c} f(x+c) d x=a \int_{b}^{c} f(x) d x\), then \(a=\)

1 0
2 -1
3 2
4 \(b-c\)
Integral Calculus

86769 The value of the integral
\(\int_{0}^{\pi / 2}\left(\sin ^{100} x-\cos ^{100} x\right) d x \text { is }\)

1 \(\frac{1}{100}\)
2 \(\frac{100 !}{(100)^{100}}\)
3 \(\frac{\pi}{100}\)
4 0
Integral Calculus

86764 \(\int_{0}^{1} \frac{d x}{e^{x}+e^{-x}}\) is equal to

1 \(\frac{\pi}{4}-\tan ^{-1}\) (e)
2 \(\tan ^{-1}(\mathrm{e})-\frac{\pi}{4}\)
3 \(\tan ^{-1}(\mathrm{e})+\frac{\pi}{4}\)
4 \(\tan ^{-1}(\mathrm{e})\)