Definite Integrals of Odd, Even and Periodic Function
Integral Calculus

86707 \(\int_{0}^{1}|5 x-3| \mathrm{d} x\) is equal to

1 \(\frac{10}{13}\)
2 \(\frac{31}{10}\)
3 \(\frac{13}{10}\)
4 None of these
Integral Calculus

86728 \(\int_{0}^{1} \log \left(\frac{1}{x}-1\right) d x\) is equal to

1 1
2 0
3 2
4 None of the above
Integral Calculus

86699 \(\int_{2}^{1}|[x-1]| d x=\)
(where, [.] is greater integer function)

1 -3
2 6
3 -6
4 3
Integral Calculus

86700 \(\int_{0}^{3}[x] d x=\)
where \([x]\) is greatest integer function.

1 3
2 0
3 2
4 1
Integral Calculus

86701 Evaluate \(\int_{1}^{2} \frac{\sqrt{x}}{\sqrt{3-x}+\sqrt{x}} d x\)

1 1
2 0
3 \(1 / 2\)
4 2
Integral Calculus

86707 \(\int_{0}^{1}|5 x-3| \mathrm{d} x\) is equal to

1 \(\frac{10}{13}\)
2 \(\frac{31}{10}\)
3 \(\frac{13}{10}\)
4 None of these
Integral Calculus

86728 \(\int_{0}^{1} \log \left(\frac{1}{x}-1\right) d x\) is equal to

1 1
2 0
3 2
4 None of the above
Integral Calculus

86699 \(\int_{2}^{1}|[x-1]| d x=\)
(where, [.] is greater integer function)

1 -3
2 6
3 -6
4 3
Integral Calculus

86700 \(\int_{0}^{3}[x] d x=\)
where \([x]\) is greatest integer function.

1 3
2 0
3 2
4 1
Integral Calculus

86701 Evaluate \(\int_{1}^{2} \frac{\sqrt{x}}{\sqrt{3-x}+\sqrt{x}} d x\)

1 1
2 0
3 \(1 / 2\)
4 2
Integral Calculus

86707 \(\int_{0}^{1}|5 x-3| \mathrm{d} x\) is equal to

1 \(\frac{10}{13}\)
2 \(\frac{31}{10}\)
3 \(\frac{13}{10}\)
4 None of these
Integral Calculus

86728 \(\int_{0}^{1} \log \left(\frac{1}{x}-1\right) d x\) is equal to

1 1
2 0
3 2
4 None of the above
Integral Calculus

86699 \(\int_{2}^{1}|[x-1]| d x=\)
(where, [.] is greater integer function)

1 -3
2 6
3 -6
4 3
Integral Calculus

86700 \(\int_{0}^{3}[x] d x=\)
where \([x]\) is greatest integer function.

1 3
2 0
3 2
4 1
Integral Calculus

86701 Evaluate \(\int_{1}^{2} \frac{\sqrt{x}}{\sqrt{3-x}+\sqrt{x}} d x\)

1 1
2 0
3 \(1 / 2\)
4 2
Integral Calculus

86707 \(\int_{0}^{1}|5 x-3| \mathrm{d} x\) is equal to

1 \(\frac{10}{13}\)
2 \(\frac{31}{10}\)
3 \(\frac{13}{10}\)
4 None of these
Integral Calculus

86728 \(\int_{0}^{1} \log \left(\frac{1}{x}-1\right) d x\) is equal to

1 1
2 0
3 2
4 None of the above
Integral Calculus

86699 \(\int_{2}^{1}|[x-1]| d x=\)
(where, [.] is greater integer function)

1 -3
2 6
3 -6
4 3
Integral Calculus

86700 \(\int_{0}^{3}[x] d x=\)
where \([x]\) is greatest integer function.

1 3
2 0
3 2
4 1
Integral Calculus

86701 Evaluate \(\int_{1}^{2} \frac{\sqrt{x}}{\sqrt{3-x}+\sqrt{x}} d x\)

1 1
2 0
3 \(1 / 2\)
4 2
Integral Calculus

86707 \(\int_{0}^{1}|5 x-3| \mathrm{d} x\) is equal to

1 \(\frac{10}{13}\)
2 \(\frac{31}{10}\)
3 \(\frac{13}{10}\)
4 None of these
Integral Calculus

86728 \(\int_{0}^{1} \log \left(\frac{1}{x}-1\right) d x\) is equal to

1 1
2 0
3 2
4 None of the above
Integral Calculus

86699 \(\int_{2}^{1}|[x-1]| d x=\)
(where, [.] is greater integer function)

1 -3
2 6
3 -6
4 3
Integral Calculus

86700 \(\int_{0}^{3}[x] d x=\)
where \([x]\) is greatest integer function.

1 3
2 0
3 2
4 1
Integral Calculus

86701 Evaluate \(\int_{1}^{2} \frac{\sqrt{x}}{\sqrt{3-x}+\sqrt{x}} d x\)

1 1
2 0
3 \(1 / 2\)
4 2