Theorem of Definite Integrals and its Properties
Integral Calculus

86501 \(\int_{1}^{e^{2}} \frac{d x}{x(1+\log x)^{2}}=\)

1 \(\frac{2}{3}\)
2 \(\frac{3}{2}\)
3 \(\frac{1}{3}\)
4 \(\frac{-2}{3}\)
Integral Calculus

86502 \(\int_{0}^{\pi / 4} \sec ^{4} x d x=\)

1 \(\frac{3}{4}\)
2 \(\frac{4}{3}\)
3 \(\frac{-3}{4}\)
4 \(-\frac{4}{3}\)
Integral Calculus

86503 \(\int_{-\pi / 4}^{\pi / 4} \frac{1}{1-\sin \mathrm{x}} \mathrm{dx}=\)

1 1
2 2
3 -2
4 -1
Integral Calculus

86504 \(\int_{0}^{\pi / 4} \sqrt{1+\sin 2 x} d x=\)

1 0
2 -1
3 1
4 2
Integral Calculus

86501 \(\int_{1}^{e^{2}} \frac{d x}{x(1+\log x)^{2}}=\)

1 \(\frac{2}{3}\)
2 \(\frac{3}{2}\)
3 \(\frac{1}{3}\)
4 \(\frac{-2}{3}\)
Integral Calculus

86502 \(\int_{0}^{\pi / 4} \sec ^{4} x d x=\)

1 \(\frac{3}{4}\)
2 \(\frac{4}{3}\)
3 \(\frac{-3}{4}\)
4 \(-\frac{4}{3}\)
Integral Calculus

86503 \(\int_{-\pi / 4}^{\pi / 4} \frac{1}{1-\sin \mathrm{x}} \mathrm{dx}=\)

1 1
2 2
3 -2
4 -1
Integral Calculus

86504 \(\int_{0}^{\pi / 4} \sqrt{1+\sin 2 x} d x=\)

1 0
2 -1
3 1
4 2
Integral Calculus

86501 \(\int_{1}^{e^{2}} \frac{d x}{x(1+\log x)^{2}}=\)

1 \(\frac{2}{3}\)
2 \(\frac{3}{2}\)
3 \(\frac{1}{3}\)
4 \(\frac{-2}{3}\)
Integral Calculus

86502 \(\int_{0}^{\pi / 4} \sec ^{4} x d x=\)

1 \(\frac{3}{4}\)
2 \(\frac{4}{3}\)
3 \(\frac{-3}{4}\)
4 \(-\frac{4}{3}\)
Integral Calculus

86503 \(\int_{-\pi / 4}^{\pi / 4} \frac{1}{1-\sin \mathrm{x}} \mathrm{dx}=\)

1 1
2 2
3 -2
4 -1
Integral Calculus

86504 \(\int_{0}^{\pi / 4} \sqrt{1+\sin 2 x} d x=\)

1 0
2 -1
3 1
4 2
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Integral Calculus

86501 \(\int_{1}^{e^{2}} \frac{d x}{x(1+\log x)^{2}}=\)

1 \(\frac{2}{3}\)
2 \(\frac{3}{2}\)
3 \(\frac{1}{3}\)
4 \(\frac{-2}{3}\)
Integral Calculus

86502 \(\int_{0}^{\pi / 4} \sec ^{4} x d x=\)

1 \(\frac{3}{4}\)
2 \(\frac{4}{3}\)
3 \(\frac{-3}{4}\)
4 \(-\frac{4}{3}\)
Integral Calculus

86503 \(\int_{-\pi / 4}^{\pi / 4} \frac{1}{1-\sin \mathrm{x}} \mathrm{dx}=\)

1 1
2 2
3 -2
4 -1
Integral Calculus

86504 \(\int_{0}^{\pi / 4} \sqrt{1+\sin 2 x} d x=\)

1 0
2 -1
3 1
4 2