Theorem of Definite Integrals and its Properties
Integral Calculus

86477 \(\int_{0}^{\pi} \frac{e^{\cos x}}{\left(e^{\cos x}+e^{-\cos x}\right)} d x\)

1 \(\frac{-\pi}{2}\)
2 \(-\pi\)
3 \(\frac{\pi}{2}\)
4 \(\pi\)
Integral Calculus

86478 \(\int_{1}^{2} \frac{d x}{x(1+\log x)^{2}}=\)

1 \(1+\log 2\)
2 \(\log 2\)
3 \(\frac{1}{(1+\log 2)}\)
4 \(\frac{\log 2}{(1+\log 2)}\)
Integral Calculus

86479 \(\int_{0}^{1}\left(\frac{x^{2}-2}{x^{2}+1}\right) d x=\)

1 \(1+\frac{\pi}{4}\)
2 \(1+\frac{3 \pi}{4}\)
3 \(1-\frac{3 \pi}{4}\)
4 \(1-\frac{\pi}{4}\)
Integral Calculus

86480 \(\int_{\frac{\pi}{5}}^{\frac{3 \pi}{10}}\left[\frac{\tan x}{\tan x+\cot x}\right] d x=\)

1 \(\frac{\pi}{5}\)
2 \(\frac{\pi}{2}\)
3 \(\frac{\pi}{20}\)
4 \(\frac{3 \pi}{10}\)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Integral Calculus

86477 \(\int_{0}^{\pi} \frac{e^{\cos x}}{\left(e^{\cos x}+e^{-\cos x}\right)} d x\)

1 \(\frac{-\pi}{2}\)
2 \(-\pi\)
3 \(\frac{\pi}{2}\)
4 \(\pi\)
Integral Calculus

86478 \(\int_{1}^{2} \frac{d x}{x(1+\log x)^{2}}=\)

1 \(1+\log 2\)
2 \(\log 2\)
3 \(\frac{1}{(1+\log 2)}\)
4 \(\frac{\log 2}{(1+\log 2)}\)
Integral Calculus

86479 \(\int_{0}^{1}\left(\frac{x^{2}-2}{x^{2}+1}\right) d x=\)

1 \(1+\frac{\pi}{4}\)
2 \(1+\frac{3 \pi}{4}\)
3 \(1-\frac{3 \pi}{4}\)
4 \(1-\frac{\pi}{4}\)
Integral Calculus

86480 \(\int_{\frac{\pi}{5}}^{\frac{3 \pi}{10}}\left[\frac{\tan x}{\tan x+\cot x}\right] d x=\)

1 \(\frac{\pi}{5}\)
2 \(\frac{\pi}{2}\)
3 \(\frac{\pi}{20}\)
4 \(\frac{3 \pi}{10}\)
Integral Calculus

86477 \(\int_{0}^{\pi} \frac{e^{\cos x}}{\left(e^{\cos x}+e^{-\cos x}\right)} d x\)

1 \(\frac{-\pi}{2}\)
2 \(-\pi\)
3 \(\frac{\pi}{2}\)
4 \(\pi\)
Integral Calculus

86478 \(\int_{1}^{2} \frac{d x}{x(1+\log x)^{2}}=\)

1 \(1+\log 2\)
2 \(\log 2\)
3 \(\frac{1}{(1+\log 2)}\)
4 \(\frac{\log 2}{(1+\log 2)}\)
Integral Calculus

86479 \(\int_{0}^{1}\left(\frac{x^{2}-2}{x^{2}+1}\right) d x=\)

1 \(1+\frac{\pi}{4}\)
2 \(1+\frac{3 \pi}{4}\)
3 \(1-\frac{3 \pi}{4}\)
4 \(1-\frac{\pi}{4}\)
Integral Calculus

86480 \(\int_{\frac{\pi}{5}}^{\frac{3 \pi}{10}}\left[\frac{\tan x}{\tan x+\cot x}\right] d x=\)

1 \(\frac{\pi}{5}\)
2 \(\frac{\pi}{2}\)
3 \(\frac{\pi}{20}\)
4 \(\frac{3 \pi}{10}\)
Integral Calculus

86477 \(\int_{0}^{\pi} \frac{e^{\cos x}}{\left(e^{\cos x}+e^{-\cos x}\right)} d x\)

1 \(\frac{-\pi}{2}\)
2 \(-\pi\)
3 \(\frac{\pi}{2}\)
4 \(\pi\)
Integral Calculus

86478 \(\int_{1}^{2} \frac{d x}{x(1+\log x)^{2}}=\)

1 \(1+\log 2\)
2 \(\log 2\)
3 \(\frac{1}{(1+\log 2)}\)
4 \(\frac{\log 2}{(1+\log 2)}\)
Integral Calculus

86479 \(\int_{0}^{1}\left(\frac{x^{2}-2}{x^{2}+1}\right) d x=\)

1 \(1+\frac{\pi}{4}\)
2 \(1+\frac{3 \pi}{4}\)
3 \(1-\frac{3 \pi}{4}\)
4 \(1-\frac{\pi}{4}\)
Integral Calculus

86480 \(\int_{\frac{\pi}{5}}^{\frac{3 \pi}{10}}\left[\frac{\tan x}{\tan x+\cot x}\right] d x=\)

1 \(\frac{\pi}{5}\)
2 \(\frac{\pi}{2}\)
3 \(\frac{\pi}{20}\)
4 \(\frac{3 \pi}{10}\)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here