Theorem of Definite Integrals and its Properties
Integral Calculus

86465 \(\int_{0}^{\pi / 8} \cos ^{3} 4 \theta d \theta\) is equal to :

1 \(\frac{5}{3}\)
2 \(\frac{5}{4}\)
3 \(\frac{1}{3}\)
4 \(\frac{1}{6}\)
Integral Calculus

86485 \(\int_{0}^{\frac{\pi}{2}} \frac{d x}{1+\cos x}=\)

1 -1
2 2
3 -2
4 1
Integral Calculus

86556 The value of \(\int_{0}^{1} \tan ^{-1}\left(\frac{2 x-1}{1+x-x^{2}}\right) d x\) is

1 0
2 1
3 -1
4 None of these
Integral Calculus

86495 \(\int_{0}^{\pi / 2} \frac{\sqrt[7]{\sin x}}{\sqrt[7]{\sin x}+\sqrt[7]{\cos x}} d x=\)

1 \(\frac{\pi}{8}\)
2 \(\frac{\pi}{2}\)
3 \(\frac{\pi}{3}\)
4 \(\frac{\pi}{4}\)
Integral Calculus

86496 \(\int_{0}^{1} x(1-x)^{5} d x=\)

1 \(\frac{1}{7}\)
2 \(\frac{1}{6}\)
3 \(\frac{1}{42}\)
4 \(-\frac{1}{42}\)
Integral Calculus

86465 \(\int_{0}^{\pi / 8} \cos ^{3} 4 \theta d \theta\) is equal to :

1 \(\frac{5}{3}\)
2 \(\frac{5}{4}\)
3 \(\frac{1}{3}\)
4 \(\frac{1}{6}\)
Integral Calculus

86485 \(\int_{0}^{\frac{\pi}{2}} \frac{d x}{1+\cos x}=\)

1 -1
2 2
3 -2
4 1
Integral Calculus

86556 The value of \(\int_{0}^{1} \tan ^{-1}\left(\frac{2 x-1}{1+x-x^{2}}\right) d x\) is

1 0
2 1
3 -1
4 None of these
Integral Calculus

86495 \(\int_{0}^{\pi / 2} \frac{\sqrt[7]{\sin x}}{\sqrt[7]{\sin x}+\sqrt[7]{\cos x}} d x=\)

1 \(\frac{\pi}{8}\)
2 \(\frac{\pi}{2}\)
3 \(\frac{\pi}{3}\)
4 \(\frac{\pi}{4}\)
Integral Calculus

86496 \(\int_{0}^{1} x(1-x)^{5} d x=\)

1 \(\frac{1}{7}\)
2 \(\frac{1}{6}\)
3 \(\frac{1}{42}\)
4 \(-\frac{1}{42}\)
Integral Calculus

86465 \(\int_{0}^{\pi / 8} \cos ^{3} 4 \theta d \theta\) is equal to :

1 \(\frac{5}{3}\)
2 \(\frac{5}{4}\)
3 \(\frac{1}{3}\)
4 \(\frac{1}{6}\)
Integral Calculus

86485 \(\int_{0}^{\frac{\pi}{2}} \frac{d x}{1+\cos x}=\)

1 -1
2 2
3 -2
4 1
Integral Calculus

86556 The value of \(\int_{0}^{1} \tan ^{-1}\left(\frac{2 x-1}{1+x-x^{2}}\right) d x\) is

1 0
2 1
3 -1
4 None of these
Integral Calculus

86495 \(\int_{0}^{\pi / 2} \frac{\sqrt[7]{\sin x}}{\sqrt[7]{\sin x}+\sqrt[7]{\cos x}} d x=\)

1 \(\frac{\pi}{8}\)
2 \(\frac{\pi}{2}\)
3 \(\frac{\pi}{3}\)
4 \(\frac{\pi}{4}\)
Integral Calculus

86496 \(\int_{0}^{1} x(1-x)^{5} d x=\)

1 \(\frac{1}{7}\)
2 \(\frac{1}{6}\)
3 \(\frac{1}{42}\)
4 \(-\frac{1}{42}\)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Integral Calculus

86465 \(\int_{0}^{\pi / 8} \cos ^{3} 4 \theta d \theta\) is equal to :

1 \(\frac{5}{3}\)
2 \(\frac{5}{4}\)
3 \(\frac{1}{3}\)
4 \(\frac{1}{6}\)
Integral Calculus

86485 \(\int_{0}^{\frac{\pi}{2}} \frac{d x}{1+\cos x}=\)

1 -1
2 2
3 -2
4 1
Integral Calculus

86556 The value of \(\int_{0}^{1} \tan ^{-1}\left(\frac{2 x-1}{1+x-x^{2}}\right) d x\) is

1 0
2 1
3 -1
4 None of these
Integral Calculus

86495 \(\int_{0}^{\pi / 2} \frac{\sqrt[7]{\sin x}}{\sqrt[7]{\sin x}+\sqrt[7]{\cos x}} d x=\)

1 \(\frac{\pi}{8}\)
2 \(\frac{\pi}{2}\)
3 \(\frac{\pi}{3}\)
4 \(\frac{\pi}{4}\)
Integral Calculus

86496 \(\int_{0}^{1} x(1-x)^{5} d x=\)

1 \(\frac{1}{7}\)
2 \(\frac{1}{6}\)
3 \(\frac{1}{42}\)
4 \(-\frac{1}{42}\)
Integral Calculus

86465 \(\int_{0}^{\pi / 8} \cos ^{3} 4 \theta d \theta\) is equal to :

1 \(\frac{5}{3}\)
2 \(\frac{5}{4}\)
3 \(\frac{1}{3}\)
4 \(\frac{1}{6}\)
Integral Calculus

86485 \(\int_{0}^{\frac{\pi}{2}} \frac{d x}{1+\cos x}=\)

1 -1
2 2
3 -2
4 1
Integral Calculus

86556 The value of \(\int_{0}^{1} \tan ^{-1}\left(\frac{2 x-1}{1+x-x^{2}}\right) d x\) is

1 0
2 1
3 -1
4 None of these
Integral Calculus

86495 \(\int_{0}^{\pi / 2} \frac{\sqrt[7]{\sin x}}{\sqrt[7]{\sin x}+\sqrt[7]{\cos x}} d x=\)

1 \(\frac{\pi}{8}\)
2 \(\frac{\pi}{2}\)
3 \(\frac{\pi}{3}\)
4 \(\frac{\pi}{4}\)
Integral Calculus

86496 \(\int_{0}^{1} x(1-x)^{5} d x=\)

1 \(\frac{1}{7}\)
2 \(\frac{1}{6}\)
3 \(\frac{1}{42}\)
4 \(-\frac{1}{42}\)