Definite Integral as Limit of a Sum
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Integral Calculus

86387 Let \(\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}\) be a differentiable function and \(\mathrm{f}(1)\) =4. What is the value of \(\lim _{x \rightarrow 1} \int_{4}^{f(x)} \frac{2 t d t}{x-1}\) equal to?

1 \(8 \mathrm{f}^{\prime}(1)\)
2 \(4 \mathrm{f}^{\prime}(1)\)
3 \(2 \mathrm{f}^{\prime}(1)\)
4 \(\mathrm{f}^{\prime}(1)\)
Integral Calculus

86388 The integral \(16 \int_{1}^{2} \frac{d x}{x^{3}\left(x^{2}+2\right)^{2}}\) is equal to

1 \(\frac{11}{6}-\log _{e} 4\)
2 \(\frac{11}{12}+\log _{\mathrm{e}} 4\)
3 \(\frac{11}{6}+\log _{e} 4\)
4 \(\frac{11}{12}-\log _{\mathrm{e}} 4\)
Integral Calculus

86389 Let the solution curve \(y=f(x)\) of the differential equation
\(\frac{d y}{d x}+\frac{x y}{x^{2}-1}=\frac{x^{4}+2 x}{\sqrt{1-x^{2}}}, x \in(-1,1)\) pass through the
origin. Then \(\int_{\frac{\sqrt{3}}{2}}^{\frac{\sqrt{3}}{2}} f(x) \mathrm{d} x\) is

1 \(\frac{\pi}{3}-\frac{1}{4}\)
2 \(\frac{\pi}{3}-\frac{\sqrt{3}}{4}\)
3 \(\frac{\pi}{6}-\frac{\sqrt{3}}{4}\)
4 \(\frac{\pi}{6}-\frac{\sqrt{3}}{2}\)
Integral Calculus

86390 The integral \(\int_{0}^{\frac{\pi}{2}} \frac{1}{3+2 \sin x+\cos x} d x\) is equal to :

1 \(\tan ^{-1}(2)\)
2 \(\tan ^{-1}(2)-\frac{\pi}{4}\)
3 \(\frac{1}{2} \tan ^{-1}(2)-\frac{\pi}{8}\)
4 \(\frac{1}{2}\)
Integral Calculus

86387 Let \(\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}\) be a differentiable function and \(\mathrm{f}(1)\) =4. What is the value of \(\lim _{x \rightarrow 1} \int_{4}^{f(x)} \frac{2 t d t}{x-1}\) equal to?

1 \(8 \mathrm{f}^{\prime}(1)\)
2 \(4 \mathrm{f}^{\prime}(1)\)
3 \(2 \mathrm{f}^{\prime}(1)\)
4 \(\mathrm{f}^{\prime}(1)\)
Integral Calculus

86388 The integral \(16 \int_{1}^{2} \frac{d x}{x^{3}\left(x^{2}+2\right)^{2}}\) is equal to

1 \(\frac{11}{6}-\log _{e} 4\)
2 \(\frac{11}{12}+\log _{\mathrm{e}} 4\)
3 \(\frac{11}{6}+\log _{e} 4\)
4 \(\frac{11}{12}-\log _{\mathrm{e}} 4\)
Integral Calculus

86389 Let the solution curve \(y=f(x)\) of the differential equation
\(\frac{d y}{d x}+\frac{x y}{x^{2}-1}=\frac{x^{4}+2 x}{\sqrt{1-x^{2}}}, x \in(-1,1)\) pass through the
origin. Then \(\int_{\frac{\sqrt{3}}{2}}^{\frac{\sqrt{3}}{2}} f(x) \mathrm{d} x\) is

1 \(\frac{\pi}{3}-\frac{1}{4}\)
2 \(\frac{\pi}{3}-\frac{\sqrt{3}}{4}\)
3 \(\frac{\pi}{6}-\frac{\sqrt{3}}{4}\)
4 \(\frac{\pi}{6}-\frac{\sqrt{3}}{2}\)
Integral Calculus

86390 The integral \(\int_{0}^{\frac{\pi}{2}} \frac{1}{3+2 \sin x+\cos x} d x\) is equal to :

1 \(\tan ^{-1}(2)\)
2 \(\tan ^{-1}(2)-\frac{\pi}{4}\)
3 \(\frac{1}{2} \tan ^{-1}(2)-\frac{\pi}{8}\)
4 \(\frac{1}{2}\)
Integral Calculus

86387 Let \(\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}\) be a differentiable function and \(\mathrm{f}(1)\) =4. What is the value of \(\lim _{x \rightarrow 1} \int_{4}^{f(x)} \frac{2 t d t}{x-1}\) equal to?

1 \(8 \mathrm{f}^{\prime}(1)\)
2 \(4 \mathrm{f}^{\prime}(1)\)
3 \(2 \mathrm{f}^{\prime}(1)\)
4 \(\mathrm{f}^{\prime}(1)\)
Integral Calculus

86388 The integral \(16 \int_{1}^{2} \frac{d x}{x^{3}\left(x^{2}+2\right)^{2}}\) is equal to

1 \(\frac{11}{6}-\log _{e} 4\)
2 \(\frac{11}{12}+\log _{\mathrm{e}} 4\)
3 \(\frac{11}{6}+\log _{e} 4\)
4 \(\frac{11}{12}-\log _{\mathrm{e}} 4\)
Integral Calculus

86389 Let the solution curve \(y=f(x)\) of the differential equation
\(\frac{d y}{d x}+\frac{x y}{x^{2}-1}=\frac{x^{4}+2 x}{\sqrt{1-x^{2}}}, x \in(-1,1)\) pass through the
origin. Then \(\int_{\frac{\sqrt{3}}{2}}^{\frac{\sqrt{3}}{2}} f(x) \mathrm{d} x\) is

1 \(\frac{\pi}{3}-\frac{1}{4}\)
2 \(\frac{\pi}{3}-\frac{\sqrt{3}}{4}\)
3 \(\frac{\pi}{6}-\frac{\sqrt{3}}{4}\)
4 \(\frac{\pi}{6}-\frac{\sqrt{3}}{2}\)
Integral Calculus

86390 The integral \(\int_{0}^{\frac{\pi}{2}} \frac{1}{3+2 \sin x+\cos x} d x\) is equal to :

1 \(\tan ^{-1}(2)\)
2 \(\tan ^{-1}(2)-\frac{\pi}{4}\)
3 \(\frac{1}{2} \tan ^{-1}(2)-\frac{\pi}{8}\)
4 \(\frac{1}{2}\)
Integral Calculus

86387 Let \(\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}\) be a differentiable function and \(\mathrm{f}(1)\) =4. What is the value of \(\lim _{x \rightarrow 1} \int_{4}^{f(x)} \frac{2 t d t}{x-1}\) equal to?

1 \(8 \mathrm{f}^{\prime}(1)\)
2 \(4 \mathrm{f}^{\prime}(1)\)
3 \(2 \mathrm{f}^{\prime}(1)\)
4 \(\mathrm{f}^{\prime}(1)\)
Integral Calculus

86388 The integral \(16 \int_{1}^{2} \frac{d x}{x^{3}\left(x^{2}+2\right)^{2}}\) is equal to

1 \(\frac{11}{6}-\log _{e} 4\)
2 \(\frac{11}{12}+\log _{\mathrm{e}} 4\)
3 \(\frac{11}{6}+\log _{e} 4\)
4 \(\frac{11}{12}-\log _{\mathrm{e}} 4\)
Integral Calculus

86389 Let the solution curve \(y=f(x)\) of the differential equation
\(\frac{d y}{d x}+\frac{x y}{x^{2}-1}=\frac{x^{4}+2 x}{\sqrt{1-x^{2}}}, x \in(-1,1)\) pass through the
origin. Then \(\int_{\frac{\sqrt{3}}{2}}^{\frac{\sqrt{3}}{2}} f(x) \mathrm{d} x\) is

1 \(\frac{\pi}{3}-\frac{1}{4}\)
2 \(\frac{\pi}{3}-\frac{\sqrt{3}}{4}\)
3 \(\frac{\pi}{6}-\frac{\sqrt{3}}{4}\)
4 \(\frac{\pi}{6}-\frac{\sqrt{3}}{2}\)
Integral Calculus

86390 The integral \(\int_{0}^{\frac{\pi}{2}} \frac{1}{3+2 \sin x+\cos x} d x\) is equal to :

1 \(\tan ^{-1}(2)\)
2 \(\tan ^{-1}(2)-\frac{\pi}{4}\)
3 \(\frac{1}{2} \tan ^{-1}(2)-\frac{\pi}{8}\)
4 \(\frac{1}{2}\)