Definite Integral as Limit of a Sum
Integral Calculus

86406 The value of \(\lim _{x \rightarrow 0} \frac{1}{x}\left[\int_{y}^{a} e^{\sin ^{2} t} d t-\int_{x+y}^{a} e^{\sin ^{2} t} d t\right]\) is equal to

1 \(\mathrm{e}^{\sin ^{2} y}\)
2 \(\mathrm{e}^{2 \sin y}\)
3 \(\mathrm{e}^{|\sin y|}\)
4 \(e^{\operatorname{cosec}^{2} y}\)
Integral Calculus

86408 If \(I_{m}=\int_{1}^{e}(\ln x)^{m} d x\), where \(m \in N\), then \(I_{10}+10\) \(I_{9}\) is equal to

1 \(\mathrm{e}^{10}\)
2 \(\frac{\mathrm{e}^{10}}{10}\)
3 e
4 \(\mathrm{e}-1\)
Integral Calculus

86409 The value of \(\int_{2}^{3} \frac{\sqrt{x}}{\sqrt{5-x}+\sqrt{x}} d x\) is

1 1
2 \(1 / 2\)
3 2
4 None of these
Integral Calculus

86410 If \(I(m, n)=\int_{n}^{1} t^{m}(1+t)^{n} d t\) then the expression for \(I(m, n)\) in terms of \(I(m+1, n-1)\) is

1 \(\frac{2^{\mathrm{n}}}{\mathrm{m}+1}-\frac{\mathrm{n}}{\mathrm{m}+1} \mathrm{I}(\mathrm{m}+1, \mathrm{n}-1)\)
2 \(\frac{\mathrm{n}}{\mathrm{m}+1} \mathrm{I}(\mathrm{m}+1, \mathrm{n}-1)\)
3 \(\frac{2^{\mathrm{n}}}{\mathrm{m}+1}+\frac{\mathrm{n}}{\mathrm{m}+1} 1(\mathrm{~m}+1, \mathrm{n}-1)\)
4 \(\frac{\mathrm{m}}{\mathrm{m}+1} \mathrm{I}(\mathrm{m}+1, \mathrm{n}-1)\)
Integral Calculus

86411 \(\int_{0}^{\pi / 4} \tan ^{2} x \sec ^{4} x d x=\)

1 \(1 / 3\)
2 \(4 / 15\)
3 1
4 \(8 / 15\)
Integral Calculus

86406 The value of \(\lim _{x \rightarrow 0} \frac{1}{x}\left[\int_{y}^{a} e^{\sin ^{2} t} d t-\int_{x+y}^{a} e^{\sin ^{2} t} d t\right]\) is equal to

1 \(\mathrm{e}^{\sin ^{2} y}\)
2 \(\mathrm{e}^{2 \sin y}\)
3 \(\mathrm{e}^{|\sin y|}\)
4 \(e^{\operatorname{cosec}^{2} y}\)
Integral Calculus

86408 If \(I_{m}=\int_{1}^{e}(\ln x)^{m} d x\), where \(m \in N\), then \(I_{10}+10\) \(I_{9}\) is equal to

1 \(\mathrm{e}^{10}\)
2 \(\frac{\mathrm{e}^{10}}{10}\)
3 e
4 \(\mathrm{e}-1\)
Integral Calculus

86409 The value of \(\int_{2}^{3} \frac{\sqrt{x}}{\sqrt{5-x}+\sqrt{x}} d x\) is

1 1
2 \(1 / 2\)
3 2
4 None of these
Integral Calculus

86410 If \(I(m, n)=\int_{n}^{1} t^{m}(1+t)^{n} d t\) then the expression for \(I(m, n)\) in terms of \(I(m+1, n-1)\) is

1 \(\frac{2^{\mathrm{n}}}{\mathrm{m}+1}-\frac{\mathrm{n}}{\mathrm{m}+1} \mathrm{I}(\mathrm{m}+1, \mathrm{n}-1)\)
2 \(\frac{\mathrm{n}}{\mathrm{m}+1} \mathrm{I}(\mathrm{m}+1, \mathrm{n}-1)\)
3 \(\frac{2^{\mathrm{n}}}{\mathrm{m}+1}+\frac{\mathrm{n}}{\mathrm{m}+1} 1(\mathrm{~m}+1, \mathrm{n}-1)\)
4 \(\frac{\mathrm{m}}{\mathrm{m}+1} \mathrm{I}(\mathrm{m}+1, \mathrm{n}-1)\)
Integral Calculus

86411 \(\int_{0}^{\pi / 4} \tan ^{2} x \sec ^{4} x d x=\)

1 \(1 / 3\)
2 \(4 / 15\)
3 1
4 \(8 / 15\)
Integral Calculus

86406 The value of \(\lim _{x \rightarrow 0} \frac{1}{x}\left[\int_{y}^{a} e^{\sin ^{2} t} d t-\int_{x+y}^{a} e^{\sin ^{2} t} d t\right]\) is equal to

1 \(\mathrm{e}^{\sin ^{2} y}\)
2 \(\mathrm{e}^{2 \sin y}\)
3 \(\mathrm{e}^{|\sin y|}\)
4 \(e^{\operatorname{cosec}^{2} y}\)
Integral Calculus

86408 If \(I_{m}=\int_{1}^{e}(\ln x)^{m} d x\), where \(m \in N\), then \(I_{10}+10\) \(I_{9}\) is equal to

1 \(\mathrm{e}^{10}\)
2 \(\frac{\mathrm{e}^{10}}{10}\)
3 e
4 \(\mathrm{e}-1\)
Integral Calculus

86409 The value of \(\int_{2}^{3} \frac{\sqrt{x}}{\sqrt{5-x}+\sqrt{x}} d x\) is

1 1
2 \(1 / 2\)
3 2
4 None of these
Integral Calculus

86410 If \(I(m, n)=\int_{n}^{1} t^{m}(1+t)^{n} d t\) then the expression for \(I(m, n)\) in terms of \(I(m+1, n-1)\) is

1 \(\frac{2^{\mathrm{n}}}{\mathrm{m}+1}-\frac{\mathrm{n}}{\mathrm{m}+1} \mathrm{I}(\mathrm{m}+1, \mathrm{n}-1)\)
2 \(\frac{\mathrm{n}}{\mathrm{m}+1} \mathrm{I}(\mathrm{m}+1, \mathrm{n}-1)\)
3 \(\frac{2^{\mathrm{n}}}{\mathrm{m}+1}+\frac{\mathrm{n}}{\mathrm{m}+1} 1(\mathrm{~m}+1, \mathrm{n}-1)\)
4 \(\frac{\mathrm{m}}{\mathrm{m}+1} \mathrm{I}(\mathrm{m}+1, \mathrm{n}-1)\)
Integral Calculus

86411 \(\int_{0}^{\pi / 4} \tan ^{2} x \sec ^{4} x d x=\)

1 \(1 / 3\)
2 \(4 / 15\)
3 1
4 \(8 / 15\)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Integral Calculus

86406 The value of \(\lim _{x \rightarrow 0} \frac{1}{x}\left[\int_{y}^{a} e^{\sin ^{2} t} d t-\int_{x+y}^{a} e^{\sin ^{2} t} d t\right]\) is equal to

1 \(\mathrm{e}^{\sin ^{2} y}\)
2 \(\mathrm{e}^{2 \sin y}\)
3 \(\mathrm{e}^{|\sin y|}\)
4 \(e^{\operatorname{cosec}^{2} y}\)
Integral Calculus

86408 If \(I_{m}=\int_{1}^{e}(\ln x)^{m} d x\), where \(m \in N\), then \(I_{10}+10\) \(I_{9}\) is equal to

1 \(\mathrm{e}^{10}\)
2 \(\frac{\mathrm{e}^{10}}{10}\)
3 e
4 \(\mathrm{e}-1\)
Integral Calculus

86409 The value of \(\int_{2}^{3} \frac{\sqrt{x}}{\sqrt{5-x}+\sqrt{x}} d x\) is

1 1
2 \(1 / 2\)
3 2
4 None of these
Integral Calculus

86410 If \(I(m, n)=\int_{n}^{1} t^{m}(1+t)^{n} d t\) then the expression for \(I(m, n)\) in terms of \(I(m+1, n-1)\) is

1 \(\frac{2^{\mathrm{n}}}{\mathrm{m}+1}-\frac{\mathrm{n}}{\mathrm{m}+1} \mathrm{I}(\mathrm{m}+1, \mathrm{n}-1)\)
2 \(\frac{\mathrm{n}}{\mathrm{m}+1} \mathrm{I}(\mathrm{m}+1, \mathrm{n}-1)\)
3 \(\frac{2^{\mathrm{n}}}{\mathrm{m}+1}+\frac{\mathrm{n}}{\mathrm{m}+1} 1(\mathrm{~m}+1, \mathrm{n}-1)\)
4 \(\frac{\mathrm{m}}{\mathrm{m}+1} \mathrm{I}(\mathrm{m}+1, \mathrm{n}-1)\)
Integral Calculus

86411 \(\int_{0}^{\pi / 4} \tan ^{2} x \sec ^{4} x d x=\)

1 \(1 / 3\)
2 \(4 / 15\)
3 1
4 \(8 / 15\)
Integral Calculus

86406 The value of \(\lim _{x \rightarrow 0} \frac{1}{x}\left[\int_{y}^{a} e^{\sin ^{2} t} d t-\int_{x+y}^{a} e^{\sin ^{2} t} d t\right]\) is equal to

1 \(\mathrm{e}^{\sin ^{2} y}\)
2 \(\mathrm{e}^{2 \sin y}\)
3 \(\mathrm{e}^{|\sin y|}\)
4 \(e^{\operatorname{cosec}^{2} y}\)
Integral Calculus

86408 If \(I_{m}=\int_{1}^{e}(\ln x)^{m} d x\), where \(m \in N\), then \(I_{10}+10\) \(I_{9}\) is equal to

1 \(\mathrm{e}^{10}\)
2 \(\frac{\mathrm{e}^{10}}{10}\)
3 e
4 \(\mathrm{e}-1\)
Integral Calculus

86409 The value of \(\int_{2}^{3} \frac{\sqrt{x}}{\sqrt{5-x}+\sqrt{x}} d x\) is

1 1
2 \(1 / 2\)
3 2
4 None of these
Integral Calculus

86410 If \(I(m, n)=\int_{n}^{1} t^{m}(1+t)^{n} d t\) then the expression for \(I(m, n)\) in terms of \(I(m+1, n-1)\) is

1 \(\frac{2^{\mathrm{n}}}{\mathrm{m}+1}-\frac{\mathrm{n}}{\mathrm{m}+1} \mathrm{I}(\mathrm{m}+1, \mathrm{n}-1)\)
2 \(\frac{\mathrm{n}}{\mathrm{m}+1} \mathrm{I}(\mathrm{m}+1, \mathrm{n}-1)\)
3 \(\frac{2^{\mathrm{n}}}{\mathrm{m}+1}+\frac{\mathrm{n}}{\mathrm{m}+1} 1(\mathrm{~m}+1, \mathrm{n}-1)\)
4 \(\frac{\mathrm{m}}{\mathrm{m}+1} \mathrm{I}(\mathrm{m}+1, \mathrm{n}-1)\)
Integral Calculus

86411 \(\int_{0}^{\pi / 4} \tan ^{2} x \sec ^{4} x d x=\)

1 \(1 / 3\)
2 \(4 / 15\)
3 1
4 \(8 / 15\)