Integration by Parts
Integral Calculus

86362 If an antiderivative of \(f(x)\) is \(\mathrm{e}^{\mathrm{x}}\) and that of \(\mathrm{g}(\mathrm{x})\) is \(\cos x\), then \(\int f(x) \cos x d x+\int g(x) e^{x} d x\) is equal to :

1 \(f(\mathrm{x}) \mathrm{g}(\mathrm{x})+\mathrm{C}\)
2 \(f(\mathrm{x})+\mathrm{g}(\mathrm{x})+\mathrm{C}\)
3 \(\mathrm{e}^{\mathrm{x}} \cos \mathrm{x}+\mathrm{C}\)
4 \(f(\mathrm{x})-\mathrm{g}(\mathrm{x})+\mathrm{C}\)
5 \(e^{\mathrm{x}} \cos \mathrm{x}+f(\mathrm{x}) g(\mathrm{x})+\mathrm{C}\)