Simple Problems
Application of Derivatives

85807 If \(a\) and \(b\) are non-zero roots of \(x^{2}+a x+b=0\) then the least value of \(x^{2}+a x+b\) is

1 \(\frac{2}{3}\)
2 \(-\frac{9}{4}\)
3 \(\frac{9}{4}\)
4 1
Application of Derivatives

85808 A wire \(34 \mathrm{~cm}\) long is to be bent in the form of a quadrilateral of which each angle is \(90^{\circ}\). What is the maximum area which can be enclosed inside the quadrilateral?

1 \(68 \mathrm{~cm}^{2}\)
2 \(70 \mathrm{~cm}^{2}\)
3 \(71.25 \mathrm{~cm}^{2}\)
4 \(72.25 \mathrm{~cm}^{2}\)
Application of Derivatives

85809 If \(e^{x}=y+\sqrt{1+y^{2}}\), then the value of \(y\) is

1 \(\frac{1}{2}\left(\mathrm{e}^{\mathrm{x}}+\mathrm{e}^{-\mathrm{x}}\right)\)
2 \(\frac{1}{2}\left(\mathrm{e}^{\mathrm{x}}-\mathrm{e}^{-\mathrm{x}}\right)\)
3 \(\mathrm{e}^{\mathrm{x}}-\mathrm{e}^{\frac{-\mathrm{x}}{2}}\)
4 \(\mathrm{e}^{\mathrm{x}}+\mathrm{e}^{\frac{-\mathrm{x}}{2}}\)
Application of Derivatives

85810 The part of straight line \(y=x+1\) between \(x=2\) and \(x=3\) is revolved about \(x\)-axis, then the curved surface of the solid thus generated is

1 \(\frac{37 \pi}{3}\)
2 \(7 \pi \sqrt{2}\)
3 \(37 \pi\)
4 \(\frac{7 \pi}{\sqrt{2}}\)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Application of Derivatives

85807 If \(a\) and \(b\) are non-zero roots of \(x^{2}+a x+b=0\) then the least value of \(x^{2}+a x+b\) is

1 \(\frac{2}{3}\)
2 \(-\frac{9}{4}\)
3 \(\frac{9}{4}\)
4 1
Application of Derivatives

85808 A wire \(34 \mathrm{~cm}\) long is to be bent in the form of a quadrilateral of which each angle is \(90^{\circ}\). What is the maximum area which can be enclosed inside the quadrilateral?

1 \(68 \mathrm{~cm}^{2}\)
2 \(70 \mathrm{~cm}^{2}\)
3 \(71.25 \mathrm{~cm}^{2}\)
4 \(72.25 \mathrm{~cm}^{2}\)
Application of Derivatives

85809 If \(e^{x}=y+\sqrt{1+y^{2}}\), then the value of \(y\) is

1 \(\frac{1}{2}\left(\mathrm{e}^{\mathrm{x}}+\mathrm{e}^{-\mathrm{x}}\right)\)
2 \(\frac{1}{2}\left(\mathrm{e}^{\mathrm{x}}-\mathrm{e}^{-\mathrm{x}}\right)\)
3 \(\mathrm{e}^{\mathrm{x}}-\mathrm{e}^{\frac{-\mathrm{x}}{2}}\)
4 \(\mathrm{e}^{\mathrm{x}}+\mathrm{e}^{\frac{-\mathrm{x}}{2}}\)
Application of Derivatives

85810 The part of straight line \(y=x+1\) between \(x=2\) and \(x=3\) is revolved about \(x\)-axis, then the curved surface of the solid thus generated is

1 \(\frac{37 \pi}{3}\)
2 \(7 \pi \sqrt{2}\)
3 \(37 \pi\)
4 \(\frac{7 \pi}{\sqrt{2}}\)
Application of Derivatives

85807 If \(a\) and \(b\) are non-zero roots of \(x^{2}+a x+b=0\) then the least value of \(x^{2}+a x+b\) is

1 \(\frac{2}{3}\)
2 \(-\frac{9}{4}\)
3 \(\frac{9}{4}\)
4 1
Application of Derivatives

85808 A wire \(34 \mathrm{~cm}\) long is to be bent in the form of a quadrilateral of which each angle is \(90^{\circ}\). What is the maximum area which can be enclosed inside the quadrilateral?

1 \(68 \mathrm{~cm}^{2}\)
2 \(70 \mathrm{~cm}^{2}\)
3 \(71.25 \mathrm{~cm}^{2}\)
4 \(72.25 \mathrm{~cm}^{2}\)
Application of Derivatives

85809 If \(e^{x}=y+\sqrt{1+y^{2}}\), then the value of \(y\) is

1 \(\frac{1}{2}\left(\mathrm{e}^{\mathrm{x}}+\mathrm{e}^{-\mathrm{x}}\right)\)
2 \(\frac{1}{2}\left(\mathrm{e}^{\mathrm{x}}-\mathrm{e}^{-\mathrm{x}}\right)\)
3 \(\mathrm{e}^{\mathrm{x}}-\mathrm{e}^{\frac{-\mathrm{x}}{2}}\)
4 \(\mathrm{e}^{\mathrm{x}}+\mathrm{e}^{\frac{-\mathrm{x}}{2}}\)
Application of Derivatives

85810 The part of straight line \(y=x+1\) between \(x=2\) and \(x=3\) is revolved about \(x\)-axis, then the curved surface of the solid thus generated is

1 \(\frac{37 \pi}{3}\)
2 \(7 \pi \sqrt{2}\)
3 \(37 \pi\)
4 \(\frac{7 \pi}{\sqrt{2}}\)
Application of Derivatives

85807 If \(a\) and \(b\) are non-zero roots of \(x^{2}+a x+b=0\) then the least value of \(x^{2}+a x+b\) is

1 \(\frac{2}{3}\)
2 \(-\frac{9}{4}\)
3 \(\frac{9}{4}\)
4 1
Application of Derivatives

85808 A wire \(34 \mathrm{~cm}\) long is to be bent in the form of a quadrilateral of which each angle is \(90^{\circ}\). What is the maximum area which can be enclosed inside the quadrilateral?

1 \(68 \mathrm{~cm}^{2}\)
2 \(70 \mathrm{~cm}^{2}\)
3 \(71.25 \mathrm{~cm}^{2}\)
4 \(72.25 \mathrm{~cm}^{2}\)
Application of Derivatives

85809 If \(e^{x}=y+\sqrt{1+y^{2}}\), then the value of \(y\) is

1 \(\frac{1}{2}\left(\mathrm{e}^{\mathrm{x}}+\mathrm{e}^{-\mathrm{x}}\right)\)
2 \(\frac{1}{2}\left(\mathrm{e}^{\mathrm{x}}-\mathrm{e}^{-\mathrm{x}}\right)\)
3 \(\mathrm{e}^{\mathrm{x}}-\mathrm{e}^{\frac{-\mathrm{x}}{2}}\)
4 \(\mathrm{e}^{\mathrm{x}}+\mathrm{e}^{\frac{-\mathrm{x}}{2}}\)
Application of Derivatives

85810 The part of straight line \(y=x+1\) between \(x=2\) and \(x=3\) is revolved about \(x\)-axis, then the curved surface of the solid thus generated is

1 \(\frac{37 \pi}{3}\)
2 \(7 \pi \sqrt{2}\)
3 \(37 \pi\)
4 \(\frac{7 \pi}{\sqrt{2}}\)