85800 The angle between the curves, y=x2 and y2−x =0 at the point (1,1) is
(E) : Differentiate the equation y=x2 with respect to xy=x2dydx=2xm2=2Again, differentiate the equationy2−x=0 with respect to xy2−x=0y2=x2ydydx=1⇒dydx=12ym1=12We know thattanθ=|m2−m11+m1 m2|tanθ=|2−121+(12×2)|tanθ=|322|tanθ=32×12=3/4θ=tan−1(34)
85801 The angle of intersection of the curves y=x2, 6y=7−x3 at (1,1) is :
(C) : Given,Curve y=x2 and 6y=7−x3Intersection point =(1,1)y=x2 and 6y=7−x3m1=dydx=2x6dydx=−3x2m1=dydx(1,1)=2 m2=dydx=−x22 m2=dydx=−12tanθ=|m1−m21+m1⋅m2|=|2−(−12)|1+2×−12|=|5/20|=∞tanθ=∞θ=tan∞∞θ=π2