Angle Between the Curve
Application of Derivatives

85783 The two curves \(y=3^{x}\) and \(y=5^{x}\) intersect at an angle

1 \(\tan ^{-1}\left(\frac{\log 3-\log 5}{1+\log 3 \log 5}\right)\)
2 \(\tan ^{-1}\left(\frac{\log 3+\log 5}{1-\log 3 \log 5}\right)\)
3 \(\tan ^{-1}\left(\frac{\log 3+\log 5}{1+\log 3 \log 5}\right)\)
4 \(\tan ^{-1}\left(\frac{\log 3-\log 5}{1-\log 3 \log 5}\right)\)
Application of Derivatives

85784 The angle at which the curve \(y=x^{2}\) and the curve \(x=\frac{5}{3} \cos t, y=\frac{5}{4} \sin t\) intersect is

1 \(\tan ^{-1} \frac{2}{41}\)
2 \(\tan ^{-1} \frac{41}{2}\)
3 \(-\tan ^{-1} \frac{2}{41}\)
4 \(2 \tan ^{-1} \frac{41}{2}\)
Application of Derivatives

85785 Angle of intersection of the curves \(r=\) \(\sin \theta+\cos \theta\) and \(r=2 \sin \theta\) is equal to

1 \(\frac{\pi}{2}\)
2 \(\frac{\pi}{3}\)
3 \(\frac{\pi}{4}\)
4 None of these
Application of Derivatives

85786 The angle between the curves \(x^{2}+y^{2}=25\) and \(x^{2}+y^{2}-2 x+3 y-43=0\) at \((-3,4)\) is

1 \(\tan ^{-1}(1)\)
2 \(\tan ^{-1}\left(\frac{1}{68}\right)\)
3 \(\frac{\pi}{2}\)
4 \(\tan ^{-1}\left(\frac{3}{4}\right)\)
Application of Derivatives

85783 The two curves \(y=3^{x}\) and \(y=5^{x}\) intersect at an angle

1 \(\tan ^{-1}\left(\frac{\log 3-\log 5}{1+\log 3 \log 5}\right)\)
2 \(\tan ^{-1}\left(\frac{\log 3+\log 5}{1-\log 3 \log 5}\right)\)
3 \(\tan ^{-1}\left(\frac{\log 3+\log 5}{1+\log 3 \log 5}\right)\)
4 \(\tan ^{-1}\left(\frac{\log 3-\log 5}{1-\log 3 \log 5}\right)\)
Application of Derivatives

85784 The angle at which the curve \(y=x^{2}\) and the curve \(x=\frac{5}{3} \cos t, y=\frac{5}{4} \sin t\) intersect is

1 \(\tan ^{-1} \frac{2}{41}\)
2 \(\tan ^{-1} \frac{41}{2}\)
3 \(-\tan ^{-1} \frac{2}{41}\)
4 \(2 \tan ^{-1} \frac{41}{2}\)
Application of Derivatives

85785 Angle of intersection of the curves \(r=\) \(\sin \theta+\cos \theta\) and \(r=2 \sin \theta\) is equal to

1 \(\frac{\pi}{2}\)
2 \(\frac{\pi}{3}\)
3 \(\frac{\pi}{4}\)
4 None of these
Application of Derivatives

85786 The angle between the curves \(x^{2}+y^{2}=25\) and \(x^{2}+y^{2}-2 x+3 y-43=0\) at \((-3,4)\) is

1 \(\tan ^{-1}(1)\)
2 \(\tan ^{-1}\left(\frac{1}{68}\right)\)
3 \(\frac{\pi}{2}\)
4 \(\tan ^{-1}\left(\frac{3}{4}\right)\)
Application of Derivatives

85783 The two curves \(y=3^{x}\) and \(y=5^{x}\) intersect at an angle

1 \(\tan ^{-1}\left(\frac{\log 3-\log 5}{1+\log 3 \log 5}\right)\)
2 \(\tan ^{-1}\left(\frac{\log 3+\log 5}{1-\log 3 \log 5}\right)\)
3 \(\tan ^{-1}\left(\frac{\log 3+\log 5}{1+\log 3 \log 5}\right)\)
4 \(\tan ^{-1}\left(\frac{\log 3-\log 5}{1-\log 3 \log 5}\right)\)
Application of Derivatives

85784 The angle at which the curve \(y=x^{2}\) and the curve \(x=\frac{5}{3} \cos t, y=\frac{5}{4} \sin t\) intersect is

1 \(\tan ^{-1} \frac{2}{41}\)
2 \(\tan ^{-1} \frac{41}{2}\)
3 \(-\tan ^{-1} \frac{2}{41}\)
4 \(2 \tan ^{-1} \frac{41}{2}\)
Application of Derivatives

85785 Angle of intersection of the curves \(r=\) \(\sin \theta+\cos \theta\) and \(r=2 \sin \theta\) is equal to

1 \(\frac{\pi}{2}\)
2 \(\frac{\pi}{3}\)
3 \(\frac{\pi}{4}\)
4 None of these
Application of Derivatives

85786 The angle between the curves \(x^{2}+y^{2}=25\) and \(x^{2}+y^{2}-2 x+3 y-43=0\) at \((-3,4)\) is

1 \(\tan ^{-1}(1)\)
2 \(\tan ^{-1}\left(\frac{1}{68}\right)\)
3 \(\frac{\pi}{2}\)
4 \(\tan ^{-1}\left(\frac{3}{4}\right)\)
Application of Derivatives

85783 The two curves \(y=3^{x}\) and \(y=5^{x}\) intersect at an angle

1 \(\tan ^{-1}\left(\frac{\log 3-\log 5}{1+\log 3 \log 5}\right)\)
2 \(\tan ^{-1}\left(\frac{\log 3+\log 5}{1-\log 3 \log 5}\right)\)
3 \(\tan ^{-1}\left(\frac{\log 3+\log 5}{1+\log 3 \log 5}\right)\)
4 \(\tan ^{-1}\left(\frac{\log 3-\log 5}{1-\log 3 \log 5}\right)\)
Application of Derivatives

85784 The angle at which the curve \(y=x^{2}\) and the curve \(x=\frac{5}{3} \cos t, y=\frac{5}{4} \sin t\) intersect is

1 \(\tan ^{-1} \frac{2}{41}\)
2 \(\tan ^{-1} \frac{41}{2}\)
3 \(-\tan ^{-1} \frac{2}{41}\)
4 \(2 \tan ^{-1} \frac{41}{2}\)
Application of Derivatives

85785 Angle of intersection of the curves \(r=\) \(\sin \theta+\cos \theta\) and \(r=2 \sin \theta\) is equal to

1 \(\frac{\pi}{2}\)
2 \(\frac{\pi}{3}\)
3 \(\frac{\pi}{4}\)
4 None of these
Application of Derivatives

85786 The angle between the curves \(x^{2}+y^{2}=25\) and \(x^{2}+y^{2}-2 x+3 y-43=0\) at \((-3,4)\) is

1 \(\tan ^{-1}(1)\)
2 \(\tan ^{-1}\left(\frac{1}{68}\right)\)
3 \(\frac{\pi}{2}\)
4 \(\tan ^{-1}\left(\frac{3}{4}\right)\)