Rolle's Theorem
Application of Derivatives

85751 For the function \(f(x)=e^{\cos x}\), Rolle's Theorem is

1 applicable when \(\frac{\pi}{2} \leq x \leq \frac{3 \pi}{2}\)
2 applicable when \(0 \leq x \leq \frac{\pi}{2}\)
3 applicable when \(0 \leq \mathrm{x} \leq \pi\)
4 applicable when \(\frac{\pi}{4} \leq x \leq \frac{\pi}{2}\)
Application of Derivatives

85752 The value of \(x\) in the interval \([4,9]\) at which the function \(f(x)=\sqrt{x}\) satisfies the mean value theorem is

1 \(\frac{13}{4}\)
2 \(\frac{17}{4}\)
3 \(\frac{21}{4}\)
4 \(\frac{25}{4}\)
Application of Derivatives

85753 A value of \(c\) for which conclusion of Mean Value Theorem holds for the function \(f(x)=\) \(\log _{e} x\) on the interval \([1,3]\) is

1 \(\log _{3} \mathrm{e}\)
2 \(\log _{\mathrm{e}} 3\)
3 \(2 \log _{3} \mathrm{e}\)
4 \(\frac{1}{2} \log _{3} \mathrm{e}\)
Application of Derivatives

85754 Find c of Lagrange's means value theorem for the function \(f(x)=3 x^2+5 x+7\) in the interval \([1,3]\).

1 \(\frac{7}{3}\)
2 2
3 \(\frac{3}{2}\)
4 \(\frac{4}{3}\)
Application of Derivatives

85751 For the function \(f(x)=e^{\cos x}\), Rolle's Theorem is

1 applicable when \(\frac{\pi}{2} \leq x \leq \frac{3 \pi}{2}\)
2 applicable when \(0 \leq x \leq \frac{\pi}{2}\)
3 applicable when \(0 \leq \mathrm{x} \leq \pi\)
4 applicable when \(\frac{\pi}{4} \leq x \leq \frac{\pi}{2}\)
Application of Derivatives

85752 The value of \(x\) in the interval \([4,9]\) at which the function \(f(x)=\sqrt{x}\) satisfies the mean value theorem is

1 \(\frac{13}{4}\)
2 \(\frac{17}{4}\)
3 \(\frac{21}{4}\)
4 \(\frac{25}{4}\)
Application of Derivatives

85753 A value of \(c\) for which conclusion of Mean Value Theorem holds for the function \(f(x)=\) \(\log _{e} x\) on the interval \([1,3]\) is

1 \(\log _{3} \mathrm{e}\)
2 \(\log _{\mathrm{e}} 3\)
3 \(2 \log _{3} \mathrm{e}\)
4 \(\frac{1}{2} \log _{3} \mathrm{e}\)
Application of Derivatives

85754 Find c of Lagrange's means value theorem for the function \(f(x)=3 x^2+5 x+7\) in the interval \([1,3]\).

1 \(\frac{7}{3}\)
2 2
3 \(\frac{3}{2}\)
4 \(\frac{4}{3}\)
Application of Derivatives

85751 For the function \(f(x)=e^{\cos x}\), Rolle's Theorem is

1 applicable when \(\frac{\pi}{2} \leq x \leq \frac{3 \pi}{2}\)
2 applicable when \(0 \leq x \leq \frac{\pi}{2}\)
3 applicable when \(0 \leq \mathrm{x} \leq \pi\)
4 applicable when \(\frac{\pi}{4} \leq x \leq \frac{\pi}{2}\)
Application of Derivatives

85752 The value of \(x\) in the interval \([4,9]\) at which the function \(f(x)=\sqrt{x}\) satisfies the mean value theorem is

1 \(\frac{13}{4}\)
2 \(\frac{17}{4}\)
3 \(\frac{21}{4}\)
4 \(\frac{25}{4}\)
Application of Derivatives

85753 A value of \(c\) for which conclusion of Mean Value Theorem holds for the function \(f(x)=\) \(\log _{e} x\) on the interval \([1,3]\) is

1 \(\log _{3} \mathrm{e}\)
2 \(\log _{\mathrm{e}} 3\)
3 \(2 \log _{3} \mathrm{e}\)
4 \(\frac{1}{2} \log _{3} \mathrm{e}\)
Application of Derivatives

85754 Find c of Lagrange's means value theorem for the function \(f(x)=3 x^2+5 x+7\) in the interval \([1,3]\).

1 \(\frac{7}{3}\)
2 2
3 \(\frac{3}{2}\)
4 \(\frac{4}{3}\)
Application of Derivatives

85751 For the function \(f(x)=e^{\cos x}\), Rolle's Theorem is

1 applicable when \(\frac{\pi}{2} \leq x \leq \frac{3 \pi}{2}\)
2 applicable when \(0 \leq x \leq \frac{\pi}{2}\)
3 applicable when \(0 \leq \mathrm{x} \leq \pi\)
4 applicable when \(\frac{\pi}{4} \leq x \leq \frac{\pi}{2}\)
Application of Derivatives

85752 The value of \(x\) in the interval \([4,9]\) at which the function \(f(x)=\sqrt{x}\) satisfies the mean value theorem is

1 \(\frac{13}{4}\)
2 \(\frac{17}{4}\)
3 \(\frac{21}{4}\)
4 \(\frac{25}{4}\)
Application of Derivatives

85753 A value of \(c\) for which conclusion of Mean Value Theorem holds for the function \(f(x)=\) \(\log _{e} x\) on the interval \([1,3]\) is

1 \(\log _{3} \mathrm{e}\)
2 \(\log _{\mathrm{e}} 3\)
3 \(2 \log _{3} \mathrm{e}\)
4 \(\frac{1}{2} \log _{3} \mathrm{e}\)
Application of Derivatives

85754 Find c of Lagrange's means value theorem for the function \(f(x)=3 x^2+5 x+7\) in the interval \([1,3]\).

1 \(\frac{7}{3}\)
2 2
3 \(\frac{3}{2}\)
4 \(\frac{4}{3}\)