Rolle's Theorem
Application of Derivatives

85746 If \(f(x)=\log (\sin x), x \in\left[\frac{\pi}{6}, \frac{5 \pi}{6}\right]\), then value of ' \(c\) ' by applying L.M.V.T. is

1 \(\frac{2 \pi}{3}\)
2 \(\frac{\pi}{2}\)
3 \(\frac{\pi}{4}\)
4 \(\frac{3 \pi}{4}\)
Application of Derivatives

85747 IF the L.M.V.T. holds for the function \(\mathrm{f}(\mathrm{x})=\mathrm{x}+\frac{1}{\mathrm{x}}, \mathrm{x} \in[1,3]\), then \(\mathrm{c}=\)

1 2
2 3
3 \(\sqrt{3}\)
4 -3
Application of Derivatives

85748 If Rolle's theorem holds for the function \(f(x)=\cos x+\sin x+7, x \in[0,2 \pi]\) and
\(0\lt \mathbf{c}\lt 2 \pi\) such that \(\mathbf{f}^{\prime}(\mathrm{c})=\mathbf{0}\), then the number of possible value of \(c\) is

1 1
2 2
3 0
4 3
Application of Derivatives

85749 If Rolle's theorem for \(f(x)=e^{x}(\sin x-\cos x)\) is verified on \(\left[\frac{\pi}{4}, \frac{5 \pi}{4}\right]\), then the value of \(c\) is

1 \(\frac{\pi}{3}\)
2 \(\frac{\pi}{2}\)
3 \(\frac{3 \pi}{4}\)
4 \(\pi\)
Application of Derivatives

85750 Let \(f(x)=\left\{\frac{x^{p}}{(\sin x)^{q}}\right.\), if \(0\lt x \leq \frac{\pi}{2}\)
(p, q \(\in \mathbf{R})\). Then, Lagrange's mean value theorem applicable to \(f(x)\) in closed interval [0, \(\mathbf{x ]}\)

1 For all \(p, q\)
2 Only when \(\mathrm{p}>\mathrm{q}\)
3 Only when \(\mathrm{P}\lt \mathrm{q}\)
4 For no value of \(p, q\)
Application of Derivatives

85746 If \(f(x)=\log (\sin x), x \in\left[\frac{\pi}{6}, \frac{5 \pi}{6}\right]\), then value of ' \(c\) ' by applying L.M.V.T. is

1 \(\frac{2 \pi}{3}\)
2 \(\frac{\pi}{2}\)
3 \(\frac{\pi}{4}\)
4 \(\frac{3 \pi}{4}\)
Application of Derivatives

85747 IF the L.M.V.T. holds for the function \(\mathrm{f}(\mathrm{x})=\mathrm{x}+\frac{1}{\mathrm{x}}, \mathrm{x} \in[1,3]\), then \(\mathrm{c}=\)

1 2
2 3
3 \(\sqrt{3}\)
4 -3
Application of Derivatives

85748 If Rolle's theorem holds for the function \(f(x)=\cos x+\sin x+7, x \in[0,2 \pi]\) and
\(0\lt \mathbf{c}\lt 2 \pi\) such that \(\mathbf{f}^{\prime}(\mathrm{c})=\mathbf{0}\), then the number of possible value of \(c\) is

1 1
2 2
3 0
4 3
Application of Derivatives

85749 If Rolle's theorem for \(f(x)=e^{x}(\sin x-\cos x)\) is verified on \(\left[\frac{\pi}{4}, \frac{5 \pi}{4}\right]\), then the value of \(c\) is

1 \(\frac{\pi}{3}\)
2 \(\frac{\pi}{2}\)
3 \(\frac{3 \pi}{4}\)
4 \(\pi\)
Application of Derivatives

85750 Let \(f(x)=\left\{\frac{x^{p}}{(\sin x)^{q}}\right.\), if \(0\lt x \leq \frac{\pi}{2}\)
(p, q \(\in \mathbf{R})\). Then, Lagrange's mean value theorem applicable to \(f(x)\) in closed interval [0, \(\mathbf{x ]}\)

1 For all \(p, q\)
2 Only when \(\mathrm{p}>\mathrm{q}\)
3 Only when \(\mathrm{P}\lt \mathrm{q}\)
4 For no value of \(p, q\)
Application of Derivatives

85746 If \(f(x)=\log (\sin x), x \in\left[\frac{\pi}{6}, \frac{5 \pi}{6}\right]\), then value of ' \(c\) ' by applying L.M.V.T. is

1 \(\frac{2 \pi}{3}\)
2 \(\frac{\pi}{2}\)
3 \(\frac{\pi}{4}\)
4 \(\frac{3 \pi}{4}\)
Application of Derivatives

85747 IF the L.M.V.T. holds for the function \(\mathrm{f}(\mathrm{x})=\mathrm{x}+\frac{1}{\mathrm{x}}, \mathrm{x} \in[1,3]\), then \(\mathrm{c}=\)

1 2
2 3
3 \(\sqrt{3}\)
4 -3
Application of Derivatives

85748 If Rolle's theorem holds for the function \(f(x)=\cos x+\sin x+7, x \in[0,2 \pi]\) and
\(0\lt \mathbf{c}\lt 2 \pi\) such that \(\mathbf{f}^{\prime}(\mathrm{c})=\mathbf{0}\), then the number of possible value of \(c\) is

1 1
2 2
3 0
4 3
Application of Derivatives

85749 If Rolle's theorem for \(f(x)=e^{x}(\sin x-\cos x)\) is verified on \(\left[\frac{\pi}{4}, \frac{5 \pi}{4}\right]\), then the value of \(c\) is

1 \(\frac{\pi}{3}\)
2 \(\frac{\pi}{2}\)
3 \(\frac{3 \pi}{4}\)
4 \(\pi\)
Application of Derivatives

85750 Let \(f(x)=\left\{\frac{x^{p}}{(\sin x)^{q}}\right.\), if \(0\lt x \leq \frac{\pi}{2}\)
(p, q \(\in \mathbf{R})\). Then, Lagrange's mean value theorem applicable to \(f(x)\) in closed interval [0, \(\mathbf{x ]}\)

1 For all \(p, q\)
2 Only when \(\mathrm{p}>\mathrm{q}\)
3 Only when \(\mathrm{P}\lt \mathrm{q}\)
4 For no value of \(p, q\)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Application of Derivatives

85746 If \(f(x)=\log (\sin x), x \in\left[\frac{\pi}{6}, \frac{5 \pi}{6}\right]\), then value of ' \(c\) ' by applying L.M.V.T. is

1 \(\frac{2 \pi}{3}\)
2 \(\frac{\pi}{2}\)
3 \(\frac{\pi}{4}\)
4 \(\frac{3 \pi}{4}\)
Application of Derivatives

85747 IF the L.M.V.T. holds for the function \(\mathrm{f}(\mathrm{x})=\mathrm{x}+\frac{1}{\mathrm{x}}, \mathrm{x} \in[1,3]\), then \(\mathrm{c}=\)

1 2
2 3
3 \(\sqrt{3}\)
4 -3
Application of Derivatives

85748 If Rolle's theorem holds for the function \(f(x)=\cos x+\sin x+7, x \in[0,2 \pi]\) and
\(0\lt \mathbf{c}\lt 2 \pi\) such that \(\mathbf{f}^{\prime}(\mathrm{c})=\mathbf{0}\), then the number of possible value of \(c\) is

1 1
2 2
3 0
4 3
Application of Derivatives

85749 If Rolle's theorem for \(f(x)=e^{x}(\sin x-\cos x)\) is verified on \(\left[\frac{\pi}{4}, \frac{5 \pi}{4}\right]\), then the value of \(c\) is

1 \(\frac{\pi}{3}\)
2 \(\frac{\pi}{2}\)
3 \(\frac{3 \pi}{4}\)
4 \(\pi\)
Application of Derivatives

85750 Let \(f(x)=\left\{\frac{x^{p}}{(\sin x)^{q}}\right.\), if \(0\lt x \leq \frac{\pi}{2}\)
(p, q \(\in \mathbf{R})\). Then, Lagrange's mean value theorem applicable to \(f(x)\) in closed interval [0, \(\mathbf{x ]}\)

1 For all \(p, q\)
2 Only when \(\mathrm{p}>\mathrm{q}\)
3 Only when \(\mathrm{P}\lt \mathrm{q}\)
4 For no value of \(p, q\)
Application of Derivatives

85746 If \(f(x)=\log (\sin x), x \in\left[\frac{\pi}{6}, \frac{5 \pi}{6}\right]\), then value of ' \(c\) ' by applying L.M.V.T. is

1 \(\frac{2 \pi}{3}\)
2 \(\frac{\pi}{2}\)
3 \(\frac{\pi}{4}\)
4 \(\frac{3 \pi}{4}\)
Application of Derivatives

85747 IF the L.M.V.T. holds for the function \(\mathrm{f}(\mathrm{x})=\mathrm{x}+\frac{1}{\mathrm{x}}, \mathrm{x} \in[1,3]\), then \(\mathrm{c}=\)

1 2
2 3
3 \(\sqrt{3}\)
4 -3
Application of Derivatives

85748 If Rolle's theorem holds for the function \(f(x)=\cos x+\sin x+7, x \in[0,2 \pi]\) and
\(0\lt \mathbf{c}\lt 2 \pi\) such that \(\mathbf{f}^{\prime}(\mathrm{c})=\mathbf{0}\), then the number of possible value of \(c\) is

1 1
2 2
3 0
4 3
Application of Derivatives

85749 If Rolle's theorem for \(f(x)=e^{x}(\sin x-\cos x)\) is verified on \(\left[\frac{\pi}{4}, \frac{5 \pi}{4}\right]\), then the value of \(c\) is

1 \(\frac{\pi}{3}\)
2 \(\frac{\pi}{2}\)
3 \(\frac{3 \pi}{4}\)
4 \(\pi\)
Application of Derivatives

85750 Let \(f(x)=\left\{\frac{x^{p}}{(\sin x)^{q}}\right.\), if \(0\lt x \leq \frac{\pi}{2}\)
(p, q \(\in \mathbf{R})\). Then, Lagrange's mean value theorem applicable to \(f(x)\) in closed interval [0, \(\mathbf{x ]}\)

1 For all \(p, q\)
2 Only when \(\mathrm{p}>\mathrm{q}\)
3 Only when \(\mathrm{P}\lt \mathrm{q}\)
4 For no value of \(p, q\)