Maxima and Minima
Application of Derivatives

85609 If \(f(x)=\frac{x^{2}-1}{x^{2}+1}, x \in R\), then the minimum value of \(f \mathrm{i}\)

1 0
2 \(4 / 5\)
3 \(3 / 5\)
4 -1
Application of Derivatives

85610 The local minimum value of \(f(x)=3 x^{\frac{5}{3}}-5 x, x>0\) is

1 -1
2 -2
3 0
4 1
Application of Derivatives

85611 Let \(f: R \rightarrow R\) be defined by \(f(x)=\left\{\begin{array}{l}k-2 x, x \leq-1 \\ 2 x+3, x>-1\end{array}\right.\). If \(f(x)\) has a local minimum at \(x=-1\), then a possible value of \(k i\)

1 0
2 \(-1 / 2\)
3 -1
4 1
Application of Derivatives

85612 Let \(f(x)\) be a function defined as
\(f(x)= \begin{cases}\sin \left(x^{2}-3 x\right), x \leq 0 \\ 6 x+5 x^{2}, x>0\end{cases}\)
Then, at \(x=0, f(x)\)

1 has a local maximum
2 has a local minimum
3 is discontinuous
4 none of these
Application of Derivatives

85609 If \(f(x)=\frac{x^{2}-1}{x^{2}+1}, x \in R\), then the minimum value of \(f \mathrm{i}\)

1 0
2 \(4 / 5\)
3 \(3 / 5\)
4 -1
Application of Derivatives

85610 The local minimum value of \(f(x)=3 x^{\frac{5}{3}}-5 x, x>0\) is

1 -1
2 -2
3 0
4 1
Application of Derivatives

85611 Let \(f: R \rightarrow R\) be defined by \(f(x)=\left\{\begin{array}{l}k-2 x, x \leq-1 \\ 2 x+3, x>-1\end{array}\right.\). If \(f(x)\) has a local minimum at \(x=-1\), then a possible value of \(k i\)

1 0
2 \(-1 / 2\)
3 -1
4 1
Application of Derivatives

85612 Let \(f(x)\) be a function defined as
\(f(x)= \begin{cases}\sin \left(x^{2}-3 x\right), x \leq 0 \\ 6 x+5 x^{2}, x>0\end{cases}\)
Then, at \(x=0, f(x)\)

1 has a local maximum
2 has a local minimum
3 is discontinuous
4 none of these
Application of Derivatives

85609 If \(f(x)=\frac{x^{2}-1}{x^{2}+1}, x \in R\), then the minimum value of \(f \mathrm{i}\)

1 0
2 \(4 / 5\)
3 \(3 / 5\)
4 -1
Application of Derivatives

85610 The local minimum value of \(f(x)=3 x^{\frac{5}{3}}-5 x, x>0\) is

1 -1
2 -2
3 0
4 1
Application of Derivatives

85611 Let \(f: R \rightarrow R\) be defined by \(f(x)=\left\{\begin{array}{l}k-2 x, x \leq-1 \\ 2 x+3, x>-1\end{array}\right.\). If \(f(x)\) has a local minimum at \(x=-1\), then a possible value of \(k i\)

1 0
2 \(-1 / 2\)
3 -1
4 1
Application of Derivatives

85612 Let \(f(x)\) be a function defined as
\(f(x)= \begin{cases}\sin \left(x^{2}-3 x\right), x \leq 0 \\ 6 x+5 x^{2}, x>0\end{cases}\)
Then, at \(x=0, f(x)\)

1 has a local maximum
2 has a local minimum
3 is discontinuous
4 none of these
Application of Derivatives

85609 If \(f(x)=\frac{x^{2}-1}{x^{2}+1}, x \in R\), then the minimum value of \(f \mathrm{i}\)

1 0
2 \(4 / 5\)
3 \(3 / 5\)
4 -1
Application of Derivatives

85610 The local minimum value of \(f(x)=3 x^{\frac{5}{3}}-5 x, x>0\) is

1 -1
2 -2
3 0
4 1
Application of Derivatives

85611 Let \(f: R \rightarrow R\) be defined by \(f(x)=\left\{\begin{array}{l}k-2 x, x \leq-1 \\ 2 x+3, x>-1\end{array}\right.\). If \(f(x)\) has a local minimum at \(x=-1\), then a possible value of \(k i\)

1 0
2 \(-1 / 2\)
3 -1
4 1
Application of Derivatives

85612 Let \(f(x)\) be a function defined as
\(f(x)= \begin{cases}\sin \left(x^{2}-3 x\right), x \leq 0 \\ 6 x+5 x^{2}, x>0\end{cases}\)
Then, at \(x=0, f(x)\)

1 has a local maximum
2 has a local minimum
3 is discontinuous
4 none of these