Maxima and Minima
Application of Derivatives

85725 The maximum volume (in cubic units) of the cylinder which can be inscribed in a sphere of diameter 6 units is

1 \(12 \sqrt{3} \pi\)
2 \(4 \sqrt{3} \pi\)
3 \(3 \sqrt{3} \pi\)
4 \(8 \sqrt{3} \pi\)
Application of Derivatives

85726 The sum of the maximum and the minimum values of \(2\left(\cos ^{-1} x\right)^{2}-\pi \cos ^{-1} x+\frac{\pi^{2}}{4}\) is

1 \(\frac{\pi^{2}}{8}\)
2 \(\frac{3 \pi^{2}}{8}\)
3 \(\frac{3 \pi^{2}}{2}\)
4 \(4 \pi^{2}\)
Application of Derivatives

85727 If \(x \in R\) and \(1 \leq \frac{3 x^{2}-7 x+8}{x^{2}+1} \leq 2\), then the minimum and maximum values of \(x\) are respectively

1 1,2
2 5,12
3 6,10
4 1,6
Application of Derivatives

85728 The minimum and maximum values of
\(\cos \left(x+\frac{\pi}{3}\right)+2 \sqrt{2} \sin \left(x+\frac{\pi}{3}\right)\) are respectively

1 \(-(2 \sqrt{3}-1)\) and \(2 \sqrt{3}-1\)
2 \(-(1+2 \sqrt{2})\) and \(1+2 \sqrt{2}\)
3 -3 and 3
4 -2 and 2
Application of Derivatives

85725 The maximum volume (in cubic units) of the cylinder which can be inscribed in a sphere of diameter 6 units is

1 \(12 \sqrt{3} \pi\)
2 \(4 \sqrt{3} \pi\)
3 \(3 \sqrt{3} \pi\)
4 \(8 \sqrt{3} \pi\)
Application of Derivatives

85726 The sum of the maximum and the minimum values of \(2\left(\cos ^{-1} x\right)^{2}-\pi \cos ^{-1} x+\frac{\pi^{2}}{4}\) is

1 \(\frac{\pi^{2}}{8}\)
2 \(\frac{3 \pi^{2}}{8}\)
3 \(\frac{3 \pi^{2}}{2}\)
4 \(4 \pi^{2}\)
Application of Derivatives

85727 If \(x \in R\) and \(1 \leq \frac{3 x^{2}-7 x+8}{x^{2}+1} \leq 2\), then the minimum and maximum values of \(x\) are respectively

1 1,2
2 5,12
3 6,10
4 1,6
Application of Derivatives

85728 The minimum and maximum values of
\(\cos \left(x+\frac{\pi}{3}\right)+2 \sqrt{2} \sin \left(x+\frac{\pi}{3}\right)\) are respectively

1 \(-(2 \sqrt{3}-1)\) and \(2 \sqrt{3}-1\)
2 \(-(1+2 \sqrt{2})\) and \(1+2 \sqrt{2}\)
3 -3 and 3
4 -2 and 2
Application of Derivatives

85725 The maximum volume (in cubic units) of the cylinder which can be inscribed in a sphere of diameter 6 units is

1 \(12 \sqrt{3} \pi\)
2 \(4 \sqrt{3} \pi\)
3 \(3 \sqrt{3} \pi\)
4 \(8 \sqrt{3} \pi\)
Application of Derivatives

85726 The sum of the maximum and the minimum values of \(2\left(\cos ^{-1} x\right)^{2}-\pi \cos ^{-1} x+\frac{\pi^{2}}{4}\) is

1 \(\frac{\pi^{2}}{8}\)
2 \(\frac{3 \pi^{2}}{8}\)
3 \(\frac{3 \pi^{2}}{2}\)
4 \(4 \pi^{2}\)
Application of Derivatives

85727 If \(x \in R\) and \(1 \leq \frac{3 x^{2}-7 x+8}{x^{2}+1} \leq 2\), then the minimum and maximum values of \(x\) are respectively

1 1,2
2 5,12
3 6,10
4 1,6
Application of Derivatives

85728 The minimum and maximum values of
\(\cos \left(x+\frac{\pi}{3}\right)+2 \sqrt{2} \sin \left(x+\frac{\pi}{3}\right)\) are respectively

1 \(-(2 \sqrt{3}-1)\) and \(2 \sqrt{3}-1\)
2 \(-(1+2 \sqrt{2})\) and \(1+2 \sqrt{2}\)
3 -3 and 3
4 -2 and 2
Application of Derivatives

85725 The maximum volume (in cubic units) of the cylinder which can be inscribed in a sphere of diameter 6 units is

1 \(12 \sqrt{3} \pi\)
2 \(4 \sqrt{3} \pi\)
3 \(3 \sqrt{3} \pi\)
4 \(8 \sqrt{3} \pi\)
Application of Derivatives

85726 The sum of the maximum and the minimum values of \(2\left(\cos ^{-1} x\right)^{2}-\pi \cos ^{-1} x+\frac{\pi^{2}}{4}\) is

1 \(\frac{\pi^{2}}{8}\)
2 \(\frac{3 \pi^{2}}{8}\)
3 \(\frac{3 \pi^{2}}{2}\)
4 \(4 \pi^{2}\)
Application of Derivatives

85727 If \(x \in R\) and \(1 \leq \frac{3 x^{2}-7 x+8}{x^{2}+1} \leq 2\), then the minimum and maximum values of \(x\) are respectively

1 1,2
2 5,12
3 6,10
4 1,6
Application of Derivatives

85728 The minimum and maximum values of
\(\cos \left(x+\frac{\pi}{3}\right)+2 \sqrt{2} \sin \left(x+\frac{\pi}{3}\right)\) are respectively

1 \(-(2 \sqrt{3}-1)\) and \(2 \sqrt{3}-1\)
2 \(-(1+2 \sqrt{2})\) and \(1+2 \sqrt{2}\)
3 -3 and 3
4 -2 and 2