Maxima and Minima
Application of Derivatives

85658 The
\(\text { maximum }\)
value
\(f(x)=2 \sin x+\cos 2 x, 0 \leq x \leq \frac{\pi}{2} \quad\) occurs at \(x\) is equal to

1 0
2 \(\pi / 6\)
3 \(\pi / 2\)
4 None of these
Application of Derivatives

85659 If \(y=|\cos x|+|\sin x|\), then \(\frac{d y}{d x}\) at \(x=\frac{2 \pi}{3}\) is

1 \(\frac{1-\sqrt{3}}{2}\)
2 0
3 \(\frac{1}{2}(\sqrt{3}-1)\)
4 None of these
Application of Derivatives

85660 The maximum value of \(f(x)=\frac{x}{4+x+x^{2}}\) on \([-1,1]\) i

1 \(-\frac{1}{3}\)
2 \(-\frac{1}{4}\)
3 \(\frac{1}{5}\)
4 \(\frac{1}{6}\)
Application of Derivatives

85661 If \(y=3^{x-1}+3^{-x-1}\) (x real), then the least value of \(y\) is:

1 2
2 6
3 \(2 / 3\)
4 None of these
Application of Derivatives

85662 The maximum value of \(x^{1 / x}\) is

1 \(1 / \mathrm{e}^{\mathrm{e}}\)
2 e
3 \(\mathrm{e}^{1 / \mathrm{e}}\)
4 \(1 / \mathrm{e}\)
Application of Derivatives

85658 The
\(\text { maximum }\)
value
\(f(x)=2 \sin x+\cos 2 x, 0 \leq x \leq \frac{\pi}{2} \quad\) occurs at \(x\) is equal to

1 0
2 \(\pi / 6\)
3 \(\pi / 2\)
4 None of these
Application of Derivatives

85659 If \(y=|\cos x|+|\sin x|\), then \(\frac{d y}{d x}\) at \(x=\frac{2 \pi}{3}\) is

1 \(\frac{1-\sqrt{3}}{2}\)
2 0
3 \(\frac{1}{2}(\sqrt{3}-1)\)
4 None of these
Application of Derivatives

85660 The maximum value of \(f(x)=\frac{x}{4+x+x^{2}}\) on \([-1,1]\) i

1 \(-\frac{1}{3}\)
2 \(-\frac{1}{4}\)
3 \(\frac{1}{5}\)
4 \(\frac{1}{6}\)
Application of Derivatives

85661 If \(y=3^{x-1}+3^{-x-1}\) (x real), then the least value of \(y\) is:

1 2
2 6
3 \(2 / 3\)
4 None of these
Application of Derivatives

85662 The maximum value of \(x^{1 / x}\) is

1 \(1 / \mathrm{e}^{\mathrm{e}}\)
2 e
3 \(\mathrm{e}^{1 / \mathrm{e}}\)
4 \(1 / \mathrm{e}\)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Application of Derivatives

85658 The
\(\text { maximum }\)
value
\(f(x)=2 \sin x+\cos 2 x, 0 \leq x \leq \frac{\pi}{2} \quad\) occurs at \(x\) is equal to

1 0
2 \(\pi / 6\)
3 \(\pi / 2\)
4 None of these
Application of Derivatives

85659 If \(y=|\cos x|+|\sin x|\), then \(\frac{d y}{d x}\) at \(x=\frac{2 \pi}{3}\) is

1 \(\frac{1-\sqrt{3}}{2}\)
2 0
3 \(\frac{1}{2}(\sqrt{3}-1)\)
4 None of these
Application of Derivatives

85660 The maximum value of \(f(x)=\frac{x}{4+x+x^{2}}\) on \([-1,1]\) i

1 \(-\frac{1}{3}\)
2 \(-\frac{1}{4}\)
3 \(\frac{1}{5}\)
4 \(\frac{1}{6}\)
Application of Derivatives

85661 If \(y=3^{x-1}+3^{-x-1}\) (x real), then the least value of \(y\) is:

1 2
2 6
3 \(2 / 3\)
4 None of these
Application of Derivatives

85662 The maximum value of \(x^{1 / x}\) is

1 \(1 / \mathrm{e}^{\mathrm{e}}\)
2 e
3 \(\mathrm{e}^{1 / \mathrm{e}}\)
4 \(1 / \mathrm{e}\)
Application of Derivatives

85658 The
\(\text { maximum }\)
value
\(f(x)=2 \sin x+\cos 2 x, 0 \leq x \leq \frac{\pi}{2} \quad\) occurs at \(x\) is equal to

1 0
2 \(\pi / 6\)
3 \(\pi / 2\)
4 None of these
Application of Derivatives

85659 If \(y=|\cos x|+|\sin x|\), then \(\frac{d y}{d x}\) at \(x=\frac{2 \pi}{3}\) is

1 \(\frac{1-\sqrt{3}}{2}\)
2 0
3 \(\frac{1}{2}(\sqrt{3}-1)\)
4 None of these
Application of Derivatives

85660 The maximum value of \(f(x)=\frac{x}{4+x+x^{2}}\) on \([-1,1]\) i

1 \(-\frac{1}{3}\)
2 \(-\frac{1}{4}\)
3 \(\frac{1}{5}\)
4 \(\frac{1}{6}\)
Application of Derivatives

85661 If \(y=3^{x-1}+3^{-x-1}\) (x real), then the least value of \(y\) is:

1 2
2 6
3 \(2 / 3\)
4 None of these
Application of Derivatives

85662 The maximum value of \(x^{1 / x}\) is

1 \(1 / \mathrm{e}^{\mathrm{e}}\)
2 e
3 \(\mathrm{e}^{1 / \mathrm{e}}\)
4 \(1 / \mathrm{e}\)
Application of Derivatives

85658 The
\(\text { maximum }\)
value
\(f(x)=2 \sin x+\cos 2 x, 0 \leq x \leq \frac{\pi}{2} \quad\) occurs at \(x\) is equal to

1 0
2 \(\pi / 6\)
3 \(\pi / 2\)
4 None of these
Application of Derivatives

85659 If \(y=|\cos x|+|\sin x|\), then \(\frac{d y}{d x}\) at \(x=\frac{2 \pi}{3}\) is

1 \(\frac{1-\sqrt{3}}{2}\)
2 0
3 \(\frac{1}{2}(\sqrt{3}-1)\)
4 None of these
Application of Derivatives

85660 The maximum value of \(f(x)=\frac{x}{4+x+x^{2}}\) on \([-1,1]\) i

1 \(-\frac{1}{3}\)
2 \(-\frac{1}{4}\)
3 \(\frac{1}{5}\)
4 \(\frac{1}{6}\)
Application of Derivatives

85661 If \(y=3^{x-1}+3^{-x-1}\) (x real), then the least value of \(y\) is:

1 2
2 6
3 \(2 / 3\)
4 None of these
Application of Derivatives

85662 The maximum value of \(x^{1 / x}\) is

1 \(1 / \mathrm{e}^{\mathrm{e}}\)
2 e
3 \(\mathrm{e}^{1 / \mathrm{e}}\)
4 \(1 / \mathrm{e}\)