Tangent and Normal
Application of Derivatives

85380 The lengths of the sub-tangent, ordinate and the sub-normal are in

1 Arithmetico geometric progressio
2 A.P.
3 H. P.
4 G.P.
Application of Derivatives

85381 The length of the subtangent at ' \(t\) ' on the curve \(x=a(t+\sin t), y=a(1-\cos t)\) is

1 \(2 \mathrm{a} \sin \frac{\mathrm{t}}{2}\)
2 \(2 a \sin ^{3}\left(\frac{\mathrm{t}}{2}\right) \sec \left(\frac{\mathrm{t}}{2}\right)\)
3 \(a \sin t\)
4 \(2 \mathrm{a} \sin \left(\frac{\mathrm{t}}{2}\right) \tan \left(\frac{\mathrm{t}}{2}\right)\)
Application of Derivatives

85382 The length of the subtangent to the curve \(x^{2} y^{2}=\) \(\mathbf{a}^{4}\) at \((-\mathbf{a}, \mathbf{a})\) i

1 \(a / 2\)
2 \(2 \mathrm{a}\)
3 a
4 \(a / 3\)
Application of Derivatives

85383 The point on the curve \(y^{2}=x\), the tangent at which makes an angle \(45^{\circ}\) with \(\mathrm{X}\)-axis is

1 \(\left(\frac{1}{4}, \frac{1}{2}\right)\)
2 \(\left(\frac{1}{2}, \frac{1}{4}\right)\)
3 \(\left(\frac{1}{2}, \frac{-1}{2}\right)\)
4 \(\left(\frac{1}{2}, \frac{1}{2}\right)\)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Application of Derivatives

85380 The lengths of the sub-tangent, ordinate and the sub-normal are in

1 Arithmetico geometric progressio
2 A.P.
3 H. P.
4 G.P.
Application of Derivatives

85381 The length of the subtangent at ' \(t\) ' on the curve \(x=a(t+\sin t), y=a(1-\cos t)\) is

1 \(2 \mathrm{a} \sin \frac{\mathrm{t}}{2}\)
2 \(2 a \sin ^{3}\left(\frac{\mathrm{t}}{2}\right) \sec \left(\frac{\mathrm{t}}{2}\right)\)
3 \(a \sin t\)
4 \(2 \mathrm{a} \sin \left(\frac{\mathrm{t}}{2}\right) \tan \left(\frac{\mathrm{t}}{2}\right)\)
Application of Derivatives

85382 The length of the subtangent to the curve \(x^{2} y^{2}=\) \(\mathbf{a}^{4}\) at \((-\mathbf{a}, \mathbf{a})\) i

1 \(a / 2\)
2 \(2 \mathrm{a}\)
3 a
4 \(a / 3\)
Application of Derivatives

85383 The point on the curve \(y^{2}=x\), the tangent at which makes an angle \(45^{\circ}\) with \(\mathrm{X}\)-axis is

1 \(\left(\frac{1}{4}, \frac{1}{2}\right)\)
2 \(\left(\frac{1}{2}, \frac{1}{4}\right)\)
3 \(\left(\frac{1}{2}, \frac{-1}{2}\right)\)
4 \(\left(\frac{1}{2}, \frac{1}{2}\right)\)
Application of Derivatives

85380 The lengths of the sub-tangent, ordinate and the sub-normal are in

1 Arithmetico geometric progressio
2 A.P.
3 H. P.
4 G.P.
Application of Derivatives

85381 The length of the subtangent at ' \(t\) ' on the curve \(x=a(t+\sin t), y=a(1-\cos t)\) is

1 \(2 \mathrm{a} \sin \frac{\mathrm{t}}{2}\)
2 \(2 a \sin ^{3}\left(\frac{\mathrm{t}}{2}\right) \sec \left(\frac{\mathrm{t}}{2}\right)\)
3 \(a \sin t\)
4 \(2 \mathrm{a} \sin \left(\frac{\mathrm{t}}{2}\right) \tan \left(\frac{\mathrm{t}}{2}\right)\)
Application of Derivatives

85382 The length of the subtangent to the curve \(x^{2} y^{2}=\) \(\mathbf{a}^{4}\) at \((-\mathbf{a}, \mathbf{a})\) i

1 \(a / 2\)
2 \(2 \mathrm{a}\)
3 a
4 \(a / 3\)
Application of Derivatives

85383 The point on the curve \(y^{2}=x\), the tangent at which makes an angle \(45^{\circ}\) with \(\mathrm{X}\)-axis is

1 \(\left(\frac{1}{4}, \frac{1}{2}\right)\)
2 \(\left(\frac{1}{2}, \frac{1}{4}\right)\)
3 \(\left(\frac{1}{2}, \frac{-1}{2}\right)\)
4 \(\left(\frac{1}{2}, \frac{1}{2}\right)\)
Application of Derivatives

85380 The lengths of the sub-tangent, ordinate and the sub-normal are in

1 Arithmetico geometric progressio
2 A.P.
3 H. P.
4 G.P.
Application of Derivatives

85381 The length of the subtangent at ' \(t\) ' on the curve \(x=a(t+\sin t), y=a(1-\cos t)\) is

1 \(2 \mathrm{a} \sin \frac{\mathrm{t}}{2}\)
2 \(2 a \sin ^{3}\left(\frac{\mathrm{t}}{2}\right) \sec \left(\frac{\mathrm{t}}{2}\right)\)
3 \(a \sin t\)
4 \(2 \mathrm{a} \sin \left(\frac{\mathrm{t}}{2}\right) \tan \left(\frac{\mathrm{t}}{2}\right)\)
Application of Derivatives

85382 The length of the subtangent to the curve \(x^{2} y^{2}=\) \(\mathbf{a}^{4}\) at \((-\mathbf{a}, \mathbf{a})\) i

1 \(a / 2\)
2 \(2 \mathrm{a}\)
3 a
4 \(a / 3\)
Application of Derivatives

85383 The point on the curve \(y^{2}=x\), the tangent at which makes an angle \(45^{\circ}\) with \(\mathrm{X}\)-axis is

1 \(\left(\frac{1}{4}, \frac{1}{2}\right)\)
2 \(\left(\frac{1}{2}, \frac{1}{4}\right)\)
3 \(\left(\frac{1}{2}, \frac{-1}{2}\right)\)
4 \(\left(\frac{1}{2}, \frac{1}{2}\right)\)