Tangent and Normal
Application of Derivatives

85431 The co-ordinates of the point on the curve \(y=\) \(x^{2}-3 x+2\) where the tangent is perpendicular to the straight line \(\mathbf{y}=\mathbf{x}\) are

1 \((0,2)\)
2 \((1,0)\)
3 \((-1,6)\)
4 \((2,-2)\)
Application of Derivatives

85432 If \(\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1(a>b)\) and \(x^{2}-y^{2}=c^{2}\) cut at right angles, then

1 \(\mathrm{a}^{2}+\mathrm{b}^{2}=2 \mathrm{c}^{2}\)
2 \(\mathrm{b}^{2}-\mathrm{a}^{2}=2 \mathrm{c}^{2}\)
3 \(\mathrm{a}^{2}-\mathrm{b}^{2}=2 \mathrm{c}^{2}\)
4 \(a^{2} b^{2}=2 c^{2}\)
Application of Derivatives

85433 The tangent lines to the curve \(y^{2}=4 a x\) at points where \(x=a\), are

1 parallel
2 perpendicular
3 inclined at \(60^{\circ}\)
4 inclined at \(30^{\circ}\)
Application of Derivatives

85434 A straight line parallel to the line \(2 x-y+5=0\) is also a tangent to the curve \(y^{2}=4 x+5\). Then the point of contact is

1 \((2,1)\)
2 \((-1,1)\)
3 \((1,3)\)
4 \((3,4)\)
Application of Derivatives

85431 The co-ordinates of the point on the curve \(y=\) \(x^{2}-3 x+2\) where the tangent is perpendicular to the straight line \(\mathbf{y}=\mathbf{x}\) are

1 \((0,2)\)
2 \((1,0)\)
3 \((-1,6)\)
4 \((2,-2)\)
Application of Derivatives

85432 If \(\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1(a>b)\) and \(x^{2}-y^{2}=c^{2}\) cut at right angles, then

1 \(\mathrm{a}^{2}+\mathrm{b}^{2}=2 \mathrm{c}^{2}\)
2 \(\mathrm{b}^{2}-\mathrm{a}^{2}=2 \mathrm{c}^{2}\)
3 \(\mathrm{a}^{2}-\mathrm{b}^{2}=2 \mathrm{c}^{2}\)
4 \(a^{2} b^{2}=2 c^{2}\)
Application of Derivatives

85433 The tangent lines to the curve \(y^{2}=4 a x\) at points where \(x=a\), are

1 parallel
2 perpendicular
3 inclined at \(60^{\circ}\)
4 inclined at \(30^{\circ}\)
Application of Derivatives

85434 A straight line parallel to the line \(2 x-y+5=0\) is also a tangent to the curve \(y^{2}=4 x+5\). Then the point of contact is

1 \((2,1)\)
2 \((-1,1)\)
3 \((1,3)\)
4 \((3,4)\)
Application of Derivatives

85431 The co-ordinates of the point on the curve \(y=\) \(x^{2}-3 x+2\) where the tangent is perpendicular to the straight line \(\mathbf{y}=\mathbf{x}\) are

1 \((0,2)\)
2 \((1,0)\)
3 \((-1,6)\)
4 \((2,-2)\)
Application of Derivatives

85432 If \(\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1(a>b)\) and \(x^{2}-y^{2}=c^{2}\) cut at right angles, then

1 \(\mathrm{a}^{2}+\mathrm{b}^{2}=2 \mathrm{c}^{2}\)
2 \(\mathrm{b}^{2}-\mathrm{a}^{2}=2 \mathrm{c}^{2}\)
3 \(\mathrm{a}^{2}-\mathrm{b}^{2}=2 \mathrm{c}^{2}\)
4 \(a^{2} b^{2}=2 c^{2}\)
Application of Derivatives

85433 The tangent lines to the curve \(y^{2}=4 a x\) at points where \(x=a\), are

1 parallel
2 perpendicular
3 inclined at \(60^{\circ}\)
4 inclined at \(30^{\circ}\)
Application of Derivatives

85434 A straight line parallel to the line \(2 x-y+5=0\) is also a tangent to the curve \(y^{2}=4 x+5\). Then the point of contact is

1 \((2,1)\)
2 \((-1,1)\)
3 \((1,3)\)
4 \((3,4)\)
Application of Derivatives

85431 The co-ordinates of the point on the curve \(y=\) \(x^{2}-3 x+2\) where the tangent is perpendicular to the straight line \(\mathbf{y}=\mathbf{x}\) are

1 \((0,2)\)
2 \((1,0)\)
3 \((-1,6)\)
4 \((2,-2)\)
Application of Derivatives

85432 If \(\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1(a>b)\) and \(x^{2}-y^{2}=c^{2}\) cut at right angles, then

1 \(\mathrm{a}^{2}+\mathrm{b}^{2}=2 \mathrm{c}^{2}\)
2 \(\mathrm{b}^{2}-\mathrm{a}^{2}=2 \mathrm{c}^{2}\)
3 \(\mathrm{a}^{2}-\mathrm{b}^{2}=2 \mathrm{c}^{2}\)
4 \(a^{2} b^{2}=2 c^{2}\)
Application of Derivatives

85433 The tangent lines to the curve \(y^{2}=4 a x\) at points where \(x=a\), are

1 parallel
2 perpendicular
3 inclined at \(60^{\circ}\)
4 inclined at \(30^{\circ}\)
Application of Derivatives

85434 A straight line parallel to the line \(2 x-y+5=0\) is also a tangent to the curve \(y^{2}=4 x+5\). Then the point of contact is

1 \((2,1)\)
2 \((-1,1)\)
3 \((1,3)\)
4 \((3,4)\)