Tangent and Normal
Application of Derivatives

85375 Approximate change in the volume \(V\) of a cube of side \(x\) meter caused by increasing the side by \(3 \%\) is

1 \(0.09 \mathrm{x}^{3} \mathrm{~m}^{3}\)
2 \(0.03 \mathrm{x}^{3} \mathrm{~m}^{3}\)
3 \(0.06 \mathrm{x}^{3} \mathrm{~m}^{3}\)
4 \(0.04 \mathrm{x}^{3} \mathrm{~m}^{3}\)
Application of Derivatives

85376 The equation of the normal to the curve \(y\left(1+x^{2}\right)=2-x\) where the tangent crosses \(x-\) axis is

1 \(5 x-y-10=0\)
2 \(x-5 y-10=0\)
3 \(5 \mathrm{x}+\mathrm{y}+10=0\)
4 \(x+5 y+10=0\)
Application of Derivatives

85377 The slope of the tangent to the curve \(x=\) \(t^{2}+3 t-8, y=2 t^{2}-2 t-5\) at the point \((2,-1) i\)

1 \(\frac{22}{7}\)
2 \(\frac{6}{7}\)
3 \(\frac{7}{6}\)
4 \(\frac{-6}{7}\)
Application of Derivatives

85378 Slope of normal to the curve \(y=x^{2}-\frac{1}{x^{2}}\) at \((-1,0)\) i

1 \(-\frac{1}{4}\)
2 -4
3 \(\frac{1}{4}\)
4 4
Application of Derivatives

85379 Length of the sub tangent at \(\left(x_{1}, y_{1}\right)\) on \(x^{n} y^{m}=\)

1 \(\frac{\mathrm{n}}{\mathrm{m}}\left|\mathrm{x}_{1}\right|\)
2 \(\frac{n}{m} x_{1}\)
3 \(\frac{\mathrm{m}}{\mathrm{n}}\left|\mathrm{x}_{1}\right|\)
4 \(\frac{\mathrm{n}}{\mathrm{m}}\left|\mathrm{y}_{1}\right|\)
Application of Derivatives

85375 Approximate change in the volume \(V\) of a cube of side \(x\) meter caused by increasing the side by \(3 \%\) is

1 \(0.09 \mathrm{x}^{3} \mathrm{~m}^{3}\)
2 \(0.03 \mathrm{x}^{3} \mathrm{~m}^{3}\)
3 \(0.06 \mathrm{x}^{3} \mathrm{~m}^{3}\)
4 \(0.04 \mathrm{x}^{3} \mathrm{~m}^{3}\)
Application of Derivatives

85376 The equation of the normal to the curve \(y\left(1+x^{2}\right)=2-x\) where the tangent crosses \(x-\) axis is

1 \(5 x-y-10=0\)
2 \(x-5 y-10=0\)
3 \(5 \mathrm{x}+\mathrm{y}+10=0\)
4 \(x+5 y+10=0\)
Application of Derivatives

85377 The slope of the tangent to the curve \(x=\) \(t^{2}+3 t-8, y=2 t^{2}-2 t-5\) at the point \((2,-1) i\)

1 \(\frac{22}{7}\)
2 \(\frac{6}{7}\)
3 \(\frac{7}{6}\)
4 \(\frac{-6}{7}\)
Application of Derivatives

85378 Slope of normal to the curve \(y=x^{2}-\frac{1}{x^{2}}\) at \((-1,0)\) i

1 \(-\frac{1}{4}\)
2 -4
3 \(\frac{1}{4}\)
4 4
Application of Derivatives

85379 Length of the sub tangent at \(\left(x_{1}, y_{1}\right)\) on \(x^{n} y^{m}=\)

1 \(\frac{\mathrm{n}}{\mathrm{m}}\left|\mathrm{x}_{1}\right|\)
2 \(\frac{n}{m} x_{1}\)
3 \(\frac{\mathrm{m}}{\mathrm{n}}\left|\mathrm{x}_{1}\right|\)
4 \(\frac{\mathrm{n}}{\mathrm{m}}\left|\mathrm{y}_{1}\right|\)
Application of Derivatives

85375 Approximate change in the volume \(V\) of a cube of side \(x\) meter caused by increasing the side by \(3 \%\) is

1 \(0.09 \mathrm{x}^{3} \mathrm{~m}^{3}\)
2 \(0.03 \mathrm{x}^{3} \mathrm{~m}^{3}\)
3 \(0.06 \mathrm{x}^{3} \mathrm{~m}^{3}\)
4 \(0.04 \mathrm{x}^{3} \mathrm{~m}^{3}\)
Application of Derivatives

85376 The equation of the normal to the curve \(y\left(1+x^{2}\right)=2-x\) where the tangent crosses \(x-\) axis is

1 \(5 x-y-10=0\)
2 \(x-5 y-10=0\)
3 \(5 \mathrm{x}+\mathrm{y}+10=0\)
4 \(x+5 y+10=0\)
Application of Derivatives

85377 The slope of the tangent to the curve \(x=\) \(t^{2}+3 t-8, y=2 t^{2}-2 t-5\) at the point \((2,-1) i\)

1 \(\frac{22}{7}\)
2 \(\frac{6}{7}\)
3 \(\frac{7}{6}\)
4 \(\frac{-6}{7}\)
Application of Derivatives

85378 Slope of normal to the curve \(y=x^{2}-\frac{1}{x^{2}}\) at \((-1,0)\) i

1 \(-\frac{1}{4}\)
2 -4
3 \(\frac{1}{4}\)
4 4
Application of Derivatives

85379 Length of the sub tangent at \(\left(x_{1}, y_{1}\right)\) on \(x^{n} y^{m}=\)

1 \(\frac{\mathrm{n}}{\mathrm{m}}\left|\mathrm{x}_{1}\right|\)
2 \(\frac{n}{m} x_{1}\)
3 \(\frac{\mathrm{m}}{\mathrm{n}}\left|\mathrm{x}_{1}\right|\)
4 \(\frac{\mathrm{n}}{\mathrm{m}}\left|\mathrm{y}_{1}\right|\)
Application of Derivatives

85375 Approximate change in the volume \(V\) of a cube of side \(x\) meter caused by increasing the side by \(3 \%\) is

1 \(0.09 \mathrm{x}^{3} \mathrm{~m}^{3}\)
2 \(0.03 \mathrm{x}^{3} \mathrm{~m}^{3}\)
3 \(0.06 \mathrm{x}^{3} \mathrm{~m}^{3}\)
4 \(0.04 \mathrm{x}^{3} \mathrm{~m}^{3}\)
Application of Derivatives

85376 The equation of the normal to the curve \(y\left(1+x^{2}\right)=2-x\) where the tangent crosses \(x-\) axis is

1 \(5 x-y-10=0\)
2 \(x-5 y-10=0\)
3 \(5 \mathrm{x}+\mathrm{y}+10=0\)
4 \(x+5 y+10=0\)
Application of Derivatives

85377 The slope of the tangent to the curve \(x=\) \(t^{2}+3 t-8, y=2 t^{2}-2 t-5\) at the point \((2,-1) i\)

1 \(\frac{22}{7}\)
2 \(\frac{6}{7}\)
3 \(\frac{7}{6}\)
4 \(\frac{-6}{7}\)
Application of Derivatives

85378 Slope of normal to the curve \(y=x^{2}-\frac{1}{x^{2}}\) at \((-1,0)\) i

1 \(-\frac{1}{4}\)
2 -4
3 \(\frac{1}{4}\)
4 4
Application of Derivatives

85379 Length of the sub tangent at \(\left(x_{1}, y_{1}\right)\) on \(x^{n} y^{m}=\)

1 \(\frac{\mathrm{n}}{\mathrm{m}}\left|\mathrm{x}_{1}\right|\)
2 \(\frac{n}{m} x_{1}\)
3 \(\frac{\mathrm{m}}{\mathrm{n}}\left|\mathrm{x}_{1}\right|\)
4 \(\frac{\mathrm{n}}{\mathrm{m}}\left|\mathrm{y}_{1}\right|\)
Application of Derivatives

85375 Approximate change in the volume \(V\) of a cube of side \(x\) meter caused by increasing the side by \(3 \%\) is

1 \(0.09 \mathrm{x}^{3} \mathrm{~m}^{3}\)
2 \(0.03 \mathrm{x}^{3} \mathrm{~m}^{3}\)
3 \(0.06 \mathrm{x}^{3} \mathrm{~m}^{3}\)
4 \(0.04 \mathrm{x}^{3} \mathrm{~m}^{3}\)
Application of Derivatives

85376 The equation of the normal to the curve \(y\left(1+x^{2}\right)=2-x\) where the tangent crosses \(x-\) axis is

1 \(5 x-y-10=0\)
2 \(x-5 y-10=0\)
3 \(5 \mathrm{x}+\mathrm{y}+10=0\)
4 \(x+5 y+10=0\)
Application of Derivatives

85377 The slope of the tangent to the curve \(x=\) \(t^{2}+3 t-8, y=2 t^{2}-2 t-5\) at the point \((2,-1) i\)

1 \(\frac{22}{7}\)
2 \(\frac{6}{7}\)
3 \(\frac{7}{6}\)
4 \(\frac{-6}{7}\)
Application of Derivatives

85378 Slope of normal to the curve \(y=x^{2}-\frac{1}{x^{2}}\) at \((-1,0)\) i

1 \(-\frac{1}{4}\)
2 -4
3 \(\frac{1}{4}\)
4 4
Application of Derivatives

85379 Length of the sub tangent at \(\left(x_{1}, y_{1}\right)\) on \(x^{n} y^{m}=\)

1 \(\frac{\mathrm{n}}{\mathrm{m}}\left|\mathrm{x}_{1}\right|\)
2 \(\frac{n}{m} x_{1}\)
3 \(\frac{\mathrm{m}}{\mathrm{n}}\left|\mathrm{x}_{1}\right|\)
4 \(\frac{\mathrm{n}}{\mathrm{m}}\left|\mathrm{y}_{1}\right|\)