Increasing and Decreasing Functions
Application of Derivatives

85269 The interval in which the function \(f(x)=x^{3}-6 x^{2}+9 x+10\) is increasing in

1 \((-\infty, 1) \cup(3, \infty)\)
2 \([1,3]\)
3 \((-\infty, 1] \cup[3, \infty)\)
4 \((-\infty,-1] \cup[3, \infty)\)
Application of Derivatives

85270 The function \(f(x)=x^{2}+2 x-5\) is strictly increasing in the interval

1 \([-1, \infty)\)
2 \((-\infty,-1)\)
3 \((-\infty,-1)\)
4 \((-1, \infty)\)
Application of Derivatives

85271 The function \(f(x)=\frac{x}{3}+\frac{3}{x}\) decreases in the interva

1 \((-3,3)\)
2 \((-\infty, 3)\)
3 \((3, \infty)\)
4 \((-9,9)\)
Application of Derivatives

85272 The set of real values of \(x\) for which \(f(x)=\frac{x}{\log x}\) is increasing is

1 empty
2 \(\{x: x \geq e\}\)
3 \(\{1\}\)
4 \(\{\mathrm{x}: \mathrm{x}\lt \mathrm{e}\}\)
Application of Derivatives

85273 The function \(f(x)=x^{2}-2 x\) is strictly decreasing in the interval

1 \((-\infty, 1)\)
2 \((1, \infty)\)
3 \(\mathrm{R}\)
4 \((-\infty, \infty)\)
Application of Derivatives

85269 The interval in which the function \(f(x)=x^{3}-6 x^{2}+9 x+10\) is increasing in

1 \((-\infty, 1) \cup(3, \infty)\)
2 \([1,3]\)
3 \((-\infty, 1] \cup[3, \infty)\)
4 \((-\infty,-1] \cup[3, \infty)\)
Application of Derivatives

85270 The function \(f(x)=x^{2}+2 x-5\) is strictly increasing in the interval

1 \([-1, \infty)\)
2 \((-\infty,-1)\)
3 \((-\infty,-1)\)
4 \((-1, \infty)\)
Application of Derivatives

85271 The function \(f(x)=\frac{x}{3}+\frac{3}{x}\) decreases in the interva

1 \((-3,3)\)
2 \((-\infty, 3)\)
3 \((3, \infty)\)
4 \((-9,9)\)
Application of Derivatives

85272 The set of real values of \(x\) for which \(f(x)=\frac{x}{\log x}\) is increasing is

1 empty
2 \(\{x: x \geq e\}\)
3 \(\{1\}\)
4 \(\{\mathrm{x}: \mathrm{x}\lt \mathrm{e}\}\)
Application of Derivatives

85273 The function \(f(x)=x^{2}-2 x\) is strictly decreasing in the interval

1 \((-\infty, 1)\)
2 \((1, \infty)\)
3 \(\mathrm{R}\)
4 \((-\infty, \infty)\)
Application of Derivatives

85269 The interval in which the function \(f(x)=x^{3}-6 x^{2}+9 x+10\) is increasing in

1 \((-\infty, 1) \cup(3, \infty)\)
2 \([1,3]\)
3 \((-\infty, 1] \cup[3, \infty)\)
4 \((-\infty,-1] \cup[3, \infty)\)
Application of Derivatives

85270 The function \(f(x)=x^{2}+2 x-5\) is strictly increasing in the interval

1 \([-1, \infty)\)
2 \((-\infty,-1)\)
3 \((-\infty,-1)\)
4 \((-1, \infty)\)
Application of Derivatives

85271 The function \(f(x)=\frac{x}{3}+\frac{3}{x}\) decreases in the interva

1 \((-3,3)\)
2 \((-\infty, 3)\)
3 \((3, \infty)\)
4 \((-9,9)\)
Application of Derivatives

85272 The set of real values of \(x\) for which \(f(x)=\frac{x}{\log x}\) is increasing is

1 empty
2 \(\{x: x \geq e\}\)
3 \(\{1\}\)
4 \(\{\mathrm{x}: \mathrm{x}\lt \mathrm{e}\}\)
Application of Derivatives

85273 The function \(f(x)=x^{2}-2 x\) is strictly decreasing in the interval

1 \((-\infty, 1)\)
2 \((1, \infty)\)
3 \(\mathrm{R}\)
4 \((-\infty, \infty)\)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Application of Derivatives

85269 The interval in which the function \(f(x)=x^{3}-6 x^{2}+9 x+10\) is increasing in

1 \((-\infty, 1) \cup(3, \infty)\)
2 \([1,3]\)
3 \((-\infty, 1] \cup[3, \infty)\)
4 \((-\infty,-1] \cup[3, \infty)\)
Application of Derivatives

85270 The function \(f(x)=x^{2}+2 x-5\) is strictly increasing in the interval

1 \([-1, \infty)\)
2 \((-\infty,-1)\)
3 \((-\infty,-1)\)
4 \((-1, \infty)\)
Application of Derivatives

85271 The function \(f(x)=\frac{x}{3}+\frac{3}{x}\) decreases in the interva

1 \((-3,3)\)
2 \((-\infty, 3)\)
3 \((3, \infty)\)
4 \((-9,9)\)
Application of Derivatives

85272 The set of real values of \(x\) for which \(f(x)=\frac{x}{\log x}\) is increasing is

1 empty
2 \(\{x: x \geq e\}\)
3 \(\{1\}\)
4 \(\{\mathrm{x}: \mathrm{x}\lt \mathrm{e}\}\)
Application of Derivatives

85273 The function \(f(x)=x^{2}-2 x\) is strictly decreasing in the interval

1 \((-\infty, 1)\)
2 \((1, \infty)\)
3 \(\mathrm{R}\)
4 \((-\infty, \infty)\)
Application of Derivatives

85269 The interval in which the function \(f(x)=x^{3}-6 x^{2}+9 x+10\) is increasing in

1 \((-\infty, 1) \cup(3, \infty)\)
2 \([1,3]\)
3 \((-\infty, 1] \cup[3, \infty)\)
4 \((-\infty,-1] \cup[3, \infty)\)
Application of Derivatives

85270 The function \(f(x)=x^{2}+2 x-5\) is strictly increasing in the interval

1 \([-1, \infty)\)
2 \((-\infty,-1)\)
3 \((-\infty,-1)\)
4 \((-1, \infty)\)
Application of Derivatives

85271 The function \(f(x)=\frac{x}{3}+\frac{3}{x}\) decreases in the interva

1 \((-3,3)\)
2 \((-\infty, 3)\)
3 \((3, \infty)\)
4 \((-9,9)\)
Application of Derivatives

85272 The set of real values of \(x\) for which \(f(x)=\frac{x}{\log x}\) is increasing is

1 empty
2 \(\{x: x \geq e\}\)
3 \(\{1\}\)
4 \(\{\mathrm{x}: \mathrm{x}\lt \mathrm{e}\}\)
Application of Derivatives

85273 The function \(f(x)=x^{2}-2 x\) is strictly decreasing in the interval

1 \((-\infty, 1)\)
2 \((1, \infty)\)
3 \(\mathrm{R}\)
4 \((-\infty, \infty)\)