Formation of Quadratic Equation with given Roots
Complex Numbers and Quadratic Equation

118459 If \(p, q\) and \(r\) are positive and are in \(A P\), the roots of the quadratic equation \(p^2+q x+r=0\) are real for

1 \(\left|\frac{\mathrm{r}}{\mathrm{p}}-7\right| \geq 4 \sqrt{3}\)
2 \(\left|\frac{\mathrm{p}}{\mathrm{r}}-7\right|\lt 4 \sqrt{3}\)
3 all \(\mathrm{p}\) and \(\mathrm{r}\)
4 no \(\mathrm{p}\) and \(\mathrm{r}\)
Complex Numbers and Quadratic Equation

118460 If \(\alpha, \beta\) are the roots of the equation \({a x^2+b x}^2\) \(\mathbf{c}=\mathbf{0}\), then \(\frac{\alpha}{\mathrm{a} \beta+\mathrm{b}}+\frac{\beta}{\mathrm{a} \alpha+\mathrm{b}}\) is equal to

1 \(\frac{2}{\mathrm{a}}\)
2 \(\frac{2}{\mathrm{~b}}\)
3 \(\frac{2}{\mathrm{c}}\)
4 \(-\frac{2}{a}\)
Complex Numbers and Quadratic Equation

118461 If \(\sin \alpha\) and \(\cos \alpha\) are the roots of the equation \(a x^2+b x+c=0\), then

1 \(\mathrm{a}^2-\mathrm{b}^2+2 \mathrm{ac}=0\)
2 \((a-c)^2=b^2+C^2\)
3 \(\mathrm{a}^2+\mathrm{b}^2-2 \mathrm{ac}=0\)
4 \(\mathrm{a}^2+\mathrm{b}^2+2 \mathrm{ac}=0\)
Complex Numbers and Quadratic Equation

118462 If \(\alpha\) and \(\beta\) are the roots of the equation \(x^2-\) \(4 x+5=0\), then the quadratic equation whose roots are \(\alpha^2+\beta\) and \(\alpha+\beta^2\) is

1 \(x^2+10 x+34=0\)
2 \(x^2-10 x+34=0\)
3 \(x^2-10 x-34=0\)
4 \(x^2+10 x-34=0\)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Complex Numbers and Quadratic Equation

118459 If \(p, q\) and \(r\) are positive and are in \(A P\), the roots of the quadratic equation \(p^2+q x+r=0\) are real for

1 \(\left|\frac{\mathrm{r}}{\mathrm{p}}-7\right| \geq 4 \sqrt{3}\)
2 \(\left|\frac{\mathrm{p}}{\mathrm{r}}-7\right|\lt 4 \sqrt{3}\)
3 all \(\mathrm{p}\) and \(\mathrm{r}\)
4 no \(\mathrm{p}\) and \(\mathrm{r}\)
Complex Numbers and Quadratic Equation

118460 If \(\alpha, \beta\) are the roots of the equation \({a x^2+b x}^2\) \(\mathbf{c}=\mathbf{0}\), then \(\frac{\alpha}{\mathrm{a} \beta+\mathrm{b}}+\frac{\beta}{\mathrm{a} \alpha+\mathrm{b}}\) is equal to

1 \(\frac{2}{\mathrm{a}}\)
2 \(\frac{2}{\mathrm{~b}}\)
3 \(\frac{2}{\mathrm{c}}\)
4 \(-\frac{2}{a}\)
Complex Numbers and Quadratic Equation

118461 If \(\sin \alpha\) and \(\cos \alpha\) are the roots of the equation \(a x^2+b x+c=0\), then

1 \(\mathrm{a}^2-\mathrm{b}^2+2 \mathrm{ac}=0\)
2 \((a-c)^2=b^2+C^2\)
3 \(\mathrm{a}^2+\mathrm{b}^2-2 \mathrm{ac}=0\)
4 \(\mathrm{a}^2+\mathrm{b}^2+2 \mathrm{ac}=0\)
Complex Numbers and Quadratic Equation

118462 If \(\alpha\) and \(\beta\) are the roots of the equation \(x^2-\) \(4 x+5=0\), then the quadratic equation whose roots are \(\alpha^2+\beta\) and \(\alpha+\beta^2\) is

1 \(x^2+10 x+34=0\)
2 \(x^2-10 x+34=0\)
3 \(x^2-10 x-34=0\)
4 \(x^2+10 x-34=0\)
Complex Numbers and Quadratic Equation

118459 If \(p, q\) and \(r\) are positive and are in \(A P\), the roots of the quadratic equation \(p^2+q x+r=0\) are real for

1 \(\left|\frac{\mathrm{r}}{\mathrm{p}}-7\right| \geq 4 \sqrt{3}\)
2 \(\left|\frac{\mathrm{p}}{\mathrm{r}}-7\right|\lt 4 \sqrt{3}\)
3 all \(\mathrm{p}\) and \(\mathrm{r}\)
4 no \(\mathrm{p}\) and \(\mathrm{r}\)
Complex Numbers and Quadratic Equation

118460 If \(\alpha, \beta\) are the roots of the equation \({a x^2+b x}^2\) \(\mathbf{c}=\mathbf{0}\), then \(\frac{\alpha}{\mathrm{a} \beta+\mathrm{b}}+\frac{\beta}{\mathrm{a} \alpha+\mathrm{b}}\) is equal to

1 \(\frac{2}{\mathrm{a}}\)
2 \(\frac{2}{\mathrm{~b}}\)
3 \(\frac{2}{\mathrm{c}}\)
4 \(-\frac{2}{a}\)
Complex Numbers and Quadratic Equation

118461 If \(\sin \alpha\) and \(\cos \alpha\) are the roots of the equation \(a x^2+b x+c=0\), then

1 \(\mathrm{a}^2-\mathrm{b}^2+2 \mathrm{ac}=0\)
2 \((a-c)^2=b^2+C^2\)
3 \(\mathrm{a}^2+\mathrm{b}^2-2 \mathrm{ac}=0\)
4 \(\mathrm{a}^2+\mathrm{b}^2+2 \mathrm{ac}=0\)
Complex Numbers and Quadratic Equation

118462 If \(\alpha\) and \(\beta\) are the roots of the equation \(x^2-\) \(4 x+5=0\), then the quadratic equation whose roots are \(\alpha^2+\beta\) and \(\alpha+\beta^2\) is

1 \(x^2+10 x+34=0\)
2 \(x^2-10 x+34=0\)
3 \(x^2-10 x-34=0\)
4 \(x^2+10 x-34=0\)
Complex Numbers and Quadratic Equation

118459 If \(p, q\) and \(r\) are positive and are in \(A P\), the roots of the quadratic equation \(p^2+q x+r=0\) are real for

1 \(\left|\frac{\mathrm{r}}{\mathrm{p}}-7\right| \geq 4 \sqrt{3}\)
2 \(\left|\frac{\mathrm{p}}{\mathrm{r}}-7\right|\lt 4 \sqrt{3}\)
3 all \(\mathrm{p}\) and \(\mathrm{r}\)
4 no \(\mathrm{p}\) and \(\mathrm{r}\)
Complex Numbers and Quadratic Equation

118460 If \(\alpha, \beta\) are the roots of the equation \({a x^2+b x}^2\) \(\mathbf{c}=\mathbf{0}\), then \(\frac{\alpha}{\mathrm{a} \beta+\mathrm{b}}+\frac{\beta}{\mathrm{a} \alpha+\mathrm{b}}\) is equal to

1 \(\frac{2}{\mathrm{a}}\)
2 \(\frac{2}{\mathrm{~b}}\)
3 \(\frac{2}{\mathrm{c}}\)
4 \(-\frac{2}{a}\)
Complex Numbers and Quadratic Equation

118461 If \(\sin \alpha\) and \(\cos \alpha\) are the roots of the equation \(a x^2+b x+c=0\), then

1 \(\mathrm{a}^2-\mathrm{b}^2+2 \mathrm{ac}=0\)
2 \((a-c)^2=b^2+C^2\)
3 \(\mathrm{a}^2+\mathrm{b}^2-2 \mathrm{ac}=0\)
4 \(\mathrm{a}^2+\mathrm{b}^2+2 \mathrm{ac}=0\)
Complex Numbers and Quadratic Equation

118462 If \(\alpha\) and \(\beta\) are the roots of the equation \(x^2-\) \(4 x+5=0\), then the quadratic equation whose roots are \(\alpha^2+\beta\) and \(\alpha+\beta^2\) is

1 \(x^2+10 x+34=0\)
2 \(x^2-10 x+34=0\)
3 \(x^2-10 x-34=0\)
4 \(x^2+10 x-34=0\)