Formation of Quadratic Equation with given Roots
Complex Numbers and Quadratic Equation

118454 If \(\sin \alpha\) and \(\cos \alpha\) are roots of the equation \(\mathbf{p x} \mathbf{2}^2+\mathbf{q x}+\mathbf{r}=\mathbf{0}\), then

1 \(\mathrm{p}^2-\mathrm{q}^2+2 \mathrm{pr}=0\)
2 \((\mathrm{p}+\mathrm{r})^2=\mathrm{q}^2-\mathrm{r}^2\)
3 \(\mathrm{p}^2+\mathrm{q}^2-2 \mathrm{pr}=0\)
4 \((\mathrm{p}-\mathrm{r})^2=\mathrm{q}^2+\mathrm{r}^2\)
Complex Numbers and Quadratic Equation

118455 If the quadratic equation \(z^2+(a+i b) z+c+\) id \(=0\), where \(a, b, c, d\) are non-zero real numbers, has a real root, then

1 \(a b d=b^2 c+d^2\)
2 \(a b c=b c^2+d^2\)
3 \(a b d=b c^2+a d^2\)
4 None of these
Complex Numbers and Quadratic Equation

118456 If \(\alpha, \beta\) are the roots of the equations \(x^2-2 x-1=0\), then what is the value of \(\alpha^2 \beta^{-2}+\alpha^{-2} \beta^2\)

1 -2
2 0
3 30
4 34
Complex Numbers and Quadratic Equation

118466 If the roots of the equation \(x^3-6 x^2+11 x-6\) \(=0\) are \(\alpha, \beta\) and \(\gamma\). Then the equation whose roots are \(\alpha^2, \beta^2, \gamma^2\) among the following is \(\qquad\)

1 \(x^3+14 x^2+49 x-36=0\)
2 \(x^3-14 x^2+49 x-36=0\)
3 \(x^3-14 x^2-49 x+36=0\)
4 \(x^3-14 x^2-49 x-36=0\)
Complex Numbers and Quadratic Equation

118458 If \(\alpha\) and \(\beta\) are roots of the equation \(x^2+p x+\frac{3 p}{4}=0\), such that \(|\alpha-\beta|=\sqrt{10}\), then \(p\) belongs to the set :

1 \(\{2,-5\}\)
2 \(\{-3,2\}\)
3 \(\{-2,5\}\)
4 \(\{3,-5\}\)
Complex Numbers and Quadratic Equation

118454 If \(\sin \alpha\) and \(\cos \alpha\) are roots of the equation \(\mathbf{p x} \mathbf{2}^2+\mathbf{q x}+\mathbf{r}=\mathbf{0}\), then

1 \(\mathrm{p}^2-\mathrm{q}^2+2 \mathrm{pr}=0\)
2 \((\mathrm{p}+\mathrm{r})^2=\mathrm{q}^2-\mathrm{r}^2\)
3 \(\mathrm{p}^2+\mathrm{q}^2-2 \mathrm{pr}=0\)
4 \((\mathrm{p}-\mathrm{r})^2=\mathrm{q}^2+\mathrm{r}^2\)
Complex Numbers and Quadratic Equation

118455 If the quadratic equation \(z^2+(a+i b) z+c+\) id \(=0\), where \(a, b, c, d\) are non-zero real numbers, has a real root, then

1 \(a b d=b^2 c+d^2\)
2 \(a b c=b c^2+d^2\)
3 \(a b d=b c^2+a d^2\)
4 None of these
Complex Numbers and Quadratic Equation

118456 If \(\alpha, \beta\) are the roots of the equations \(x^2-2 x-1=0\), then what is the value of \(\alpha^2 \beta^{-2}+\alpha^{-2} \beta^2\)

1 -2
2 0
3 30
4 34
Complex Numbers and Quadratic Equation

118466 If the roots of the equation \(x^3-6 x^2+11 x-6\) \(=0\) are \(\alpha, \beta\) and \(\gamma\). Then the equation whose roots are \(\alpha^2, \beta^2, \gamma^2\) among the following is \(\qquad\)

1 \(x^3+14 x^2+49 x-36=0\)
2 \(x^3-14 x^2+49 x-36=0\)
3 \(x^3-14 x^2-49 x+36=0\)
4 \(x^3-14 x^2-49 x-36=0\)
Complex Numbers and Quadratic Equation

118458 If \(\alpha\) and \(\beta\) are roots of the equation \(x^2+p x+\frac{3 p}{4}=0\), such that \(|\alpha-\beta|=\sqrt{10}\), then \(p\) belongs to the set :

1 \(\{2,-5\}\)
2 \(\{-3,2\}\)
3 \(\{-2,5\}\)
4 \(\{3,-5\}\)
Complex Numbers and Quadratic Equation

118454 If \(\sin \alpha\) and \(\cos \alpha\) are roots of the equation \(\mathbf{p x} \mathbf{2}^2+\mathbf{q x}+\mathbf{r}=\mathbf{0}\), then

1 \(\mathrm{p}^2-\mathrm{q}^2+2 \mathrm{pr}=0\)
2 \((\mathrm{p}+\mathrm{r})^2=\mathrm{q}^2-\mathrm{r}^2\)
3 \(\mathrm{p}^2+\mathrm{q}^2-2 \mathrm{pr}=0\)
4 \((\mathrm{p}-\mathrm{r})^2=\mathrm{q}^2+\mathrm{r}^2\)
Complex Numbers and Quadratic Equation

118455 If the quadratic equation \(z^2+(a+i b) z+c+\) id \(=0\), where \(a, b, c, d\) are non-zero real numbers, has a real root, then

1 \(a b d=b^2 c+d^2\)
2 \(a b c=b c^2+d^2\)
3 \(a b d=b c^2+a d^2\)
4 None of these
Complex Numbers and Quadratic Equation

118456 If \(\alpha, \beta\) are the roots of the equations \(x^2-2 x-1=0\), then what is the value of \(\alpha^2 \beta^{-2}+\alpha^{-2} \beta^2\)

1 -2
2 0
3 30
4 34
Complex Numbers and Quadratic Equation

118466 If the roots of the equation \(x^3-6 x^2+11 x-6\) \(=0\) are \(\alpha, \beta\) and \(\gamma\). Then the equation whose roots are \(\alpha^2, \beta^2, \gamma^2\) among the following is \(\qquad\)

1 \(x^3+14 x^2+49 x-36=0\)
2 \(x^3-14 x^2+49 x-36=0\)
3 \(x^3-14 x^2-49 x+36=0\)
4 \(x^3-14 x^2-49 x-36=0\)
Complex Numbers and Quadratic Equation

118458 If \(\alpha\) and \(\beta\) are roots of the equation \(x^2+p x+\frac{3 p}{4}=0\), such that \(|\alpha-\beta|=\sqrt{10}\), then \(p\) belongs to the set :

1 \(\{2,-5\}\)
2 \(\{-3,2\}\)
3 \(\{-2,5\}\)
4 \(\{3,-5\}\)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Complex Numbers and Quadratic Equation

118454 If \(\sin \alpha\) and \(\cos \alpha\) are roots of the equation \(\mathbf{p x} \mathbf{2}^2+\mathbf{q x}+\mathbf{r}=\mathbf{0}\), then

1 \(\mathrm{p}^2-\mathrm{q}^2+2 \mathrm{pr}=0\)
2 \((\mathrm{p}+\mathrm{r})^2=\mathrm{q}^2-\mathrm{r}^2\)
3 \(\mathrm{p}^2+\mathrm{q}^2-2 \mathrm{pr}=0\)
4 \((\mathrm{p}-\mathrm{r})^2=\mathrm{q}^2+\mathrm{r}^2\)
Complex Numbers and Quadratic Equation

118455 If the quadratic equation \(z^2+(a+i b) z+c+\) id \(=0\), where \(a, b, c, d\) are non-zero real numbers, has a real root, then

1 \(a b d=b^2 c+d^2\)
2 \(a b c=b c^2+d^2\)
3 \(a b d=b c^2+a d^2\)
4 None of these
Complex Numbers and Quadratic Equation

118456 If \(\alpha, \beta\) are the roots of the equations \(x^2-2 x-1=0\), then what is the value of \(\alpha^2 \beta^{-2}+\alpha^{-2} \beta^2\)

1 -2
2 0
3 30
4 34
Complex Numbers and Quadratic Equation

118466 If the roots of the equation \(x^3-6 x^2+11 x-6\) \(=0\) are \(\alpha, \beta\) and \(\gamma\). Then the equation whose roots are \(\alpha^2, \beta^2, \gamma^2\) among the following is \(\qquad\)

1 \(x^3+14 x^2+49 x-36=0\)
2 \(x^3-14 x^2+49 x-36=0\)
3 \(x^3-14 x^2-49 x+36=0\)
4 \(x^3-14 x^2-49 x-36=0\)
Complex Numbers and Quadratic Equation

118458 If \(\alpha\) and \(\beta\) are roots of the equation \(x^2+p x+\frac{3 p}{4}=0\), such that \(|\alpha-\beta|=\sqrt{10}\), then \(p\) belongs to the set :

1 \(\{2,-5\}\)
2 \(\{-3,2\}\)
3 \(\{-2,5\}\)
4 \(\{3,-5\}\)
Complex Numbers and Quadratic Equation

118454 If \(\sin \alpha\) and \(\cos \alpha\) are roots of the equation \(\mathbf{p x} \mathbf{2}^2+\mathbf{q x}+\mathbf{r}=\mathbf{0}\), then

1 \(\mathrm{p}^2-\mathrm{q}^2+2 \mathrm{pr}=0\)
2 \((\mathrm{p}+\mathrm{r})^2=\mathrm{q}^2-\mathrm{r}^2\)
3 \(\mathrm{p}^2+\mathrm{q}^2-2 \mathrm{pr}=0\)
4 \((\mathrm{p}-\mathrm{r})^2=\mathrm{q}^2+\mathrm{r}^2\)
Complex Numbers and Quadratic Equation

118455 If the quadratic equation \(z^2+(a+i b) z+c+\) id \(=0\), where \(a, b, c, d\) are non-zero real numbers, has a real root, then

1 \(a b d=b^2 c+d^2\)
2 \(a b c=b c^2+d^2\)
3 \(a b d=b c^2+a d^2\)
4 None of these
Complex Numbers and Quadratic Equation

118456 If \(\alpha, \beta\) are the roots of the equations \(x^2-2 x-1=0\), then what is the value of \(\alpha^2 \beta^{-2}+\alpha^{-2} \beta^2\)

1 -2
2 0
3 30
4 34
Complex Numbers and Quadratic Equation

118466 If the roots of the equation \(x^3-6 x^2+11 x-6\) \(=0\) are \(\alpha, \beta\) and \(\gamma\). Then the equation whose roots are \(\alpha^2, \beta^2, \gamma^2\) among the following is \(\qquad\)

1 \(x^3+14 x^2+49 x-36=0\)
2 \(x^3-14 x^2+49 x-36=0\)
3 \(x^3-14 x^2-49 x+36=0\)
4 \(x^3-14 x^2-49 x-36=0\)
Complex Numbers and Quadratic Equation

118458 If \(\alpha\) and \(\beta\) are roots of the equation \(x^2+p x+\frac{3 p}{4}=0\), such that \(|\alpha-\beta|=\sqrt{10}\), then \(p\) belongs to the set :

1 \(\{2,-5\}\)
2 \(\{-3,2\}\)
3 \(\{-2,5\}\)
4 \(\{3,-5\}\)