118194
Let
\(A_r=\left(x+\frac{1}{x}\right)^3 \cdot\left(x^2+\frac{1}{x^2}\right)^3 \cdot\left(x^3+\frac{1}{x^3}\right)^3 \ldots\)
\(\left(x^r+\frac{1}{x^r}\right)^3 \cdot\) If \(x^2+x+1=0\), then
\(\frac{1}{\mathrm{~A}_3}+\frac{1}{\mathrm{~A}_6}+\frac{1}{\mathrm{~A}_9}+\frac{1}{\mathrm{~A}_{12}}+\ldots \infty=\)
118194
Let
\(A_r=\left(x+\frac{1}{x}\right)^3 \cdot\left(x^2+\frac{1}{x^2}\right)^3 \cdot\left(x^3+\frac{1}{x^3}\right)^3 \ldots\)
\(\left(x^r+\frac{1}{x^r}\right)^3 \cdot\) If \(x^2+x+1=0\), then
\(\frac{1}{\mathrm{~A}_3}+\frac{1}{\mathrm{~A}_6}+\frac{1}{\mathrm{~A}_9}+\frac{1}{\mathrm{~A}_{12}}+\ldots \infty=\)
118194
Let
\(A_r=\left(x+\frac{1}{x}\right)^3 \cdot\left(x^2+\frac{1}{x^2}\right)^3 \cdot\left(x^3+\frac{1}{x^3}\right)^3 \ldots\)
\(\left(x^r+\frac{1}{x^r}\right)^3 \cdot\) If \(x^2+x+1=0\), then
\(\frac{1}{\mathrm{~A}_3}+\frac{1}{\mathrm{~A}_6}+\frac{1}{\mathrm{~A}_9}+\frac{1}{\mathrm{~A}_{12}}+\ldots \infty=\)
118194
Let
\(A_r=\left(x+\frac{1}{x}\right)^3 \cdot\left(x^2+\frac{1}{x^2}\right)^3 \cdot\left(x^3+\frac{1}{x^3}\right)^3 \ldots\)
\(\left(x^r+\frac{1}{x^r}\right)^3 \cdot\) If \(x^2+x+1=0\), then
\(\frac{1}{\mathrm{~A}_3}+\frac{1}{\mathrm{~A}_6}+\frac{1}{\mathrm{~A}_9}+\frac{1}{\mathrm{~A}_{12}}+\ldots \infty=\)
118194
Let
\(A_r=\left(x+\frac{1}{x}\right)^3 \cdot\left(x^2+\frac{1}{x^2}\right)^3 \cdot\left(x^3+\frac{1}{x^3}\right)^3 \ldots\)
\(\left(x^r+\frac{1}{x^r}\right)^3 \cdot\) If \(x^2+x+1=0\), then
\(\frac{1}{\mathrm{~A}_3}+\frac{1}{\mathrm{~A}_6}+\frac{1}{\mathrm{~A}_9}+\frac{1}{\mathrm{~A}_{12}}+\ldots \infty=\)