Solution of Quadratic and Higher Degree Equations
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Complex Numbers and Quadratic Equation

118126 If \(a, b, c\) are in Arithmetic Progression (AP), then the roots of the equation
\(\mathbf{a x ^ { 2 }}-\mathbf{2 b x}+\mathbf{c}=\mathbf{0}\) are

1 \(1, \frac{c}{a}\)
2 \(\frac{-1}{\mathrm{a}},-\mathrm{c}\)
3 \(-1, \frac{-\mathrm{c}}{\mathrm{a}}\)
4 \(-2, \frac{-\mathrm{c}}{2 \mathrm{a}}\)
Complex Numbers and Quadratic Equation

118163 The number of the real solutions of the equation \(x^2-3|x|+2=0\) is

1 2
2 4
3 1
4 3
Complex Numbers and Quadratic Equation

118127 If \(x\) is real, then the value of \(\frac{x^2-3 x+4}{x^2+3 x+4}\) lies in the interval

1 \(\left[\frac{1}{3}, 3\right]\)
2 \(\left[\frac{1}{5}, 5\right]\)
3 \(\left[\frac{1}{6}, 6\right]\)
4 \(\left[\frac{1}{7}, 7\right]\)
Complex Numbers and Quadratic Equation

118129 If \(\alpha, \beta, \gamma\) are the roots of the equation \(x^3-6 x^2+11 x-6=0\) and if \(a=\alpha^2+\beta^2+\gamma^2 . b=\alpha \beta+\beta \gamma\) \(+\gamma \alpha\) and \(c=(\alpha+\beta)(\beta+\gamma)(\gamma+\alpha)\), then the correct inequality among he following is.

1 \(\mathrm{a}\lt \mathrm{b}\lt \mathrm{C}\)
2 \(\mathrm{b}\lt \mathrm{a}\lt \mathrm{c}\)
3 \(\mathrm{b}\lt \mathrm{c}\lt \mathrm{a}\)
4 \(c\lt a\lt b\)
Complex Numbers and Quadratic Equation

118126 If \(a, b, c\) are in Arithmetic Progression (AP), then the roots of the equation
\(\mathbf{a x ^ { 2 }}-\mathbf{2 b x}+\mathbf{c}=\mathbf{0}\) are

1 \(1, \frac{c}{a}\)
2 \(\frac{-1}{\mathrm{a}},-\mathrm{c}\)
3 \(-1, \frac{-\mathrm{c}}{\mathrm{a}}\)
4 \(-2, \frac{-\mathrm{c}}{2 \mathrm{a}}\)
Complex Numbers and Quadratic Equation

118163 The number of the real solutions of the equation \(x^2-3|x|+2=0\) is

1 2
2 4
3 1
4 3
Complex Numbers and Quadratic Equation

118127 If \(x\) is real, then the value of \(\frac{x^2-3 x+4}{x^2+3 x+4}\) lies in the interval

1 \(\left[\frac{1}{3}, 3\right]\)
2 \(\left[\frac{1}{5}, 5\right]\)
3 \(\left[\frac{1}{6}, 6\right]\)
4 \(\left[\frac{1}{7}, 7\right]\)
Complex Numbers and Quadratic Equation

118129 If \(\alpha, \beta, \gamma\) are the roots of the equation \(x^3-6 x^2+11 x-6=0\) and if \(a=\alpha^2+\beta^2+\gamma^2 . b=\alpha \beta+\beta \gamma\) \(+\gamma \alpha\) and \(c=(\alpha+\beta)(\beta+\gamma)(\gamma+\alpha)\), then the correct inequality among he following is.

1 \(\mathrm{a}\lt \mathrm{b}\lt \mathrm{C}\)
2 \(\mathrm{b}\lt \mathrm{a}\lt \mathrm{c}\)
3 \(\mathrm{b}\lt \mathrm{c}\lt \mathrm{a}\)
4 \(c\lt a\lt b\)
Complex Numbers and Quadratic Equation

118126 If \(a, b, c\) are in Arithmetic Progression (AP), then the roots of the equation
\(\mathbf{a x ^ { 2 }}-\mathbf{2 b x}+\mathbf{c}=\mathbf{0}\) are

1 \(1, \frac{c}{a}\)
2 \(\frac{-1}{\mathrm{a}},-\mathrm{c}\)
3 \(-1, \frac{-\mathrm{c}}{\mathrm{a}}\)
4 \(-2, \frac{-\mathrm{c}}{2 \mathrm{a}}\)
Complex Numbers and Quadratic Equation

118163 The number of the real solutions of the equation \(x^2-3|x|+2=0\) is

1 2
2 4
3 1
4 3
Complex Numbers and Quadratic Equation

118127 If \(x\) is real, then the value of \(\frac{x^2-3 x+4}{x^2+3 x+4}\) lies in the interval

1 \(\left[\frac{1}{3}, 3\right]\)
2 \(\left[\frac{1}{5}, 5\right]\)
3 \(\left[\frac{1}{6}, 6\right]\)
4 \(\left[\frac{1}{7}, 7\right]\)
Complex Numbers and Quadratic Equation

118129 If \(\alpha, \beta, \gamma\) are the roots of the equation \(x^3-6 x^2+11 x-6=0\) and if \(a=\alpha^2+\beta^2+\gamma^2 . b=\alpha \beta+\beta \gamma\) \(+\gamma \alpha\) and \(c=(\alpha+\beta)(\beta+\gamma)(\gamma+\alpha)\), then the correct inequality among he following is.

1 \(\mathrm{a}\lt \mathrm{b}\lt \mathrm{C}\)
2 \(\mathrm{b}\lt \mathrm{a}\lt \mathrm{c}\)
3 \(\mathrm{b}\lt \mathrm{c}\lt \mathrm{a}\)
4 \(c\lt a\lt b\)
Complex Numbers and Quadratic Equation

118126 If \(a, b, c\) are in Arithmetic Progression (AP), then the roots of the equation
\(\mathbf{a x ^ { 2 }}-\mathbf{2 b x}+\mathbf{c}=\mathbf{0}\) are

1 \(1, \frac{c}{a}\)
2 \(\frac{-1}{\mathrm{a}},-\mathrm{c}\)
3 \(-1, \frac{-\mathrm{c}}{\mathrm{a}}\)
4 \(-2, \frac{-\mathrm{c}}{2 \mathrm{a}}\)
Complex Numbers and Quadratic Equation

118163 The number of the real solutions of the equation \(x^2-3|x|+2=0\) is

1 2
2 4
3 1
4 3
Complex Numbers and Quadratic Equation

118127 If \(x\) is real, then the value of \(\frac{x^2-3 x+4}{x^2+3 x+4}\) lies in the interval

1 \(\left[\frac{1}{3}, 3\right]\)
2 \(\left[\frac{1}{5}, 5\right]\)
3 \(\left[\frac{1}{6}, 6\right]\)
4 \(\left[\frac{1}{7}, 7\right]\)
Complex Numbers and Quadratic Equation

118129 If \(\alpha, \beta, \gamma\) are the roots of the equation \(x^3-6 x^2+11 x-6=0\) and if \(a=\alpha^2+\beta^2+\gamma^2 . b=\alpha \beta+\beta \gamma\) \(+\gamma \alpha\) and \(c=(\alpha+\beta)(\beta+\gamma)(\gamma+\alpha)\), then the correct inequality among he following is.

1 \(\mathrm{a}\lt \mathrm{b}\lt \mathrm{C}\)
2 \(\mathrm{b}\lt \mathrm{a}\lt \mathrm{c}\)
3 \(\mathrm{b}\lt \mathrm{c}\lt \mathrm{a}\)
4 \(c\lt a\lt b\)