Solution of Quadratic and Higher Degree Equations
Complex Numbers and Quadratic Equation

118116 Let \(a, b>0\) satisfy \(a^3+b^3=a-b\), then

1 \(a^2+b^2>1\)
2 \(\mathrm{a}^2+\mathrm{b}^2\lt 0\)
3 \(\mathrm{a}^2+\mathrm{b}^2=1\)
4 \(a^2+a b+b^2\lt 1\)
Complex Numbers and Quadratic Equation

118117 The number of solutions of equation \(\sin ^4 \theta-2 \sin ^2 \theta-1=0\) which lie between 0 and \(2 \pi\) is

1 0
2 1
3 2
4 4
Complex Numbers and Quadratic Equation

118118 The number of solutions of the equation \(3 \sin ^2 x-7 \sin x+2=0\), in the interval \([0,5 \pi]\) is

1 0
2 5
3 6
4 10
Complex Numbers and Quadratic Equation

118119 If one of the roots of the equation \(\mathbf{x}^2+\mathbf{p x}+\mathbf{q}=\)
0 is equal to the square of the other then \(\qquad\)

1 \(\mathrm{p}\left(\mathrm{q}^2-3 \mathrm{p}\right)=\mathrm{q}(\mathrm{p}-1)\)
2 \(p\left(3 p-q^2\right)=p(p+1)\)
3 \(\mathrm{p}\left(3 \mathrm{q}-\mathrm{p}^2\right)=\mathrm{q}(\mathrm{q}-1)\)
4 \(p\left(3 q-p^2\right)=q(q+1)\)
Complex Numbers and Quadratic Equation

118120 The number of real roots of the equation \(\frac{\left(x^2+1\right)^3}{x^3}+\frac{x^2+1}{3 x}=0(x \neq 0)\) is

1 1
2 0
3 2
4 3
Complex Numbers and Quadratic Equation

118116 Let \(a, b>0\) satisfy \(a^3+b^3=a-b\), then

1 \(a^2+b^2>1\)
2 \(\mathrm{a}^2+\mathrm{b}^2\lt 0\)
3 \(\mathrm{a}^2+\mathrm{b}^2=1\)
4 \(a^2+a b+b^2\lt 1\)
Complex Numbers and Quadratic Equation

118117 The number of solutions of equation \(\sin ^4 \theta-2 \sin ^2 \theta-1=0\) which lie between 0 and \(2 \pi\) is

1 0
2 1
3 2
4 4
Complex Numbers and Quadratic Equation

118118 The number of solutions of the equation \(3 \sin ^2 x-7 \sin x+2=0\), in the interval \([0,5 \pi]\) is

1 0
2 5
3 6
4 10
Complex Numbers and Quadratic Equation

118119 If one of the roots of the equation \(\mathbf{x}^2+\mathbf{p x}+\mathbf{q}=\)
0 is equal to the square of the other then \(\qquad\)

1 \(\mathrm{p}\left(\mathrm{q}^2-3 \mathrm{p}\right)=\mathrm{q}(\mathrm{p}-1)\)
2 \(p\left(3 p-q^2\right)=p(p+1)\)
3 \(\mathrm{p}\left(3 \mathrm{q}-\mathrm{p}^2\right)=\mathrm{q}(\mathrm{q}-1)\)
4 \(p\left(3 q-p^2\right)=q(q+1)\)
Complex Numbers and Quadratic Equation

118120 The number of real roots of the equation \(\frac{\left(x^2+1\right)^3}{x^3}+\frac{x^2+1}{3 x}=0(x \neq 0)\) is

1 1
2 0
3 2
4 3
Complex Numbers and Quadratic Equation

118116 Let \(a, b>0\) satisfy \(a^3+b^3=a-b\), then

1 \(a^2+b^2>1\)
2 \(\mathrm{a}^2+\mathrm{b}^2\lt 0\)
3 \(\mathrm{a}^2+\mathrm{b}^2=1\)
4 \(a^2+a b+b^2\lt 1\)
Complex Numbers and Quadratic Equation

118117 The number of solutions of equation \(\sin ^4 \theta-2 \sin ^2 \theta-1=0\) which lie between 0 and \(2 \pi\) is

1 0
2 1
3 2
4 4
Complex Numbers and Quadratic Equation

118118 The number of solutions of the equation \(3 \sin ^2 x-7 \sin x+2=0\), in the interval \([0,5 \pi]\) is

1 0
2 5
3 6
4 10
Complex Numbers and Quadratic Equation

118119 If one of the roots of the equation \(\mathbf{x}^2+\mathbf{p x}+\mathbf{q}=\)
0 is equal to the square of the other then \(\qquad\)

1 \(\mathrm{p}\left(\mathrm{q}^2-3 \mathrm{p}\right)=\mathrm{q}(\mathrm{p}-1)\)
2 \(p\left(3 p-q^2\right)=p(p+1)\)
3 \(\mathrm{p}\left(3 \mathrm{q}-\mathrm{p}^2\right)=\mathrm{q}(\mathrm{q}-1)\)
4 \(p\left(3 q-p^2\right)=q(q+1)\)
Complex Numbers and Quadratic Equation

118120 The number of real roots of the equation \(\frac{\left(x^2+1\right)^3}{x^3}+\frac{x^2+1}{3 x}=0(x \neq 0)\) is

1 1
2 0
3 2
4 3
Complex Numbers and Quadratic Equation

118116 Let \(a, b>0\) satisfy \(a^3+b^3=a-b\), then

1 \(a^2+b^2>1\)
2 \(\mathrm{a}^2+\mathrm{b}^2\lt 0\)
3 \(\mathrm{a}^2+\mathrm{b}^2=1\)
4 \(a^2+a b+b^2\lt 1\)
Complex Numbers and Quadratic Equation

118117 The number of solutions of equation \(\sin ^4 \theta-2 \sin ^2 \theta-1=0\) which lie between 0 and \(2 \pi\) is

1 0
2 1
3 2
4 4
Complex Numbers and Quadratic Equation

118118 The number of solutions of the equation \(3 \sin ^2 x-7 \sin x+2=0\), in the interval \([0,5 \pi]\) is

1 0
2 5
3 6
4 10
Complex Numbers and Quadratic Equation

118119 If one of the roots of the equation \(\mathbf{x}^2+\mathbf{p x}+\mathbf{q}=\)
0 is equal to the square of the other then \(\qquad\)

1 \(\mathrm{p}\left(\mathrm{q}^2-3 \mathrm{p}\right)=\mathrm{q}(\mathrm{p}-1)\)
2 \(p\left(3 p-q^2\right)=p(p+1)\)
3 \(\mathrm{p}\left(3 \mathrm{q}-\mathrm{p}^2\right)=\mathrm{q}(\mathrm{q}-1)\)
4 \(p\left(3 q-p^2\right)=q(q+1)\)
Complex Numbers and Quadratic Equation

118120 The number of real roots of the equation \(\frac{\left(x^2+1\right)^3}{x^3}+\frac{x^2+1}{3 x}=0(x \neq 0)\) is

1 1
2 0
3 2
4 3
Complex Numbers and Quadratic Equation

118116 Let \(a, b>0\) satisfy \(a^3+b^3=a-b\), then

1 \(a^2+b^2>1\)
2 \(\mathrm{a}^2+\mathrm{b}^2\lt 0\)
3 \(\mathrm{a}^2+\mathrm{b}^2=1\)
4 \(a^2+a b+b^2\lt 1\)
Complex Numbers and Quadratic Equation

118117 The number of solutions of equation \(\sin ^4 \theta-2 \sin ^2 \theta-1=0\) which lie between 0 and \(2 \pi\) is

1 0
2 1
3 2
4 4
Complex Numbers and Quadratic Equation

118118 The number of solutions of the equation \(3 \sin ^2 x-7 \sin x+2=0\), in the interval \([0,5 \pi]\) is

1 0
2 5
3 6
4 10
Complex Numbers and Quadratic Equation

118119 If one of the roots of the equation \(\mathbf{x}^2+\mathbf{p x}+\mathbf{q}=\)
0 is equal to the square of the other then \(\qquad\)

1 \(\mathrm{p}\left(\mathrm{q}^2-3 \mathrm{p}\right)=\mathrm{q}(\mathrm{p}-1)\)
2 \(p\left(3 p-q^2\right)=p(p+1)\)
3 \(\mathrm{p}\left(3 \mathrm{q}-\mathrm{p}^2\right)=\mathrm{q}(\mathrm{q}-1)\)
4 \(p\left(3 q-p^2\right)=q(q+1)\)
Complex Numbers and Quadratic Equation

118120 The number of real roots of the equation \(\frac{\left(x^2+1\right)^3}{x^3}+\frac{x^2+1}{3 x}=0(x \neq 0)\) is

1 1
2 0
3 2
4 3