Solution of Quadratic and Higher Degree Equations
Complex Numbers and Quadratic Equation

118053 If \(\alpha\) and \(\beta\) are roots of the equation \(x^2+x+1\) \(=0\), then \(\alpha^2+\beta^2\) is

1 1
2 \(\frac{-1-\mathrm{i} \sqrt{3}}{2}\)
3 \(\frac{-1+\mathrm{i} \sqrt{3}}{2}\)
4 -1
Complex Numbers and Quadratic Equation

118054 If \(\alpha, \beta, \gamma\) are the roots of the equation \(x^3+4 x+2=0\), then \(\alpha^3+\beta^3+\gamma^3=\)

1 -6
2 2
3 6
4 -2
Complex Numbers and Quadratic Equation

118083 The number of roots of the equation \(|x|^2-7|x|+12=0\) is

1 1
2 2
3 3
4 4
Complex Numbers and Quadratic Equation

118049 \(x+2\) is a factor of

1 : \((-2)^4+2=16+2=18 \neq 0\)
\(\therefore(\mathrm{x}+2)\) is not the factor of \(\mathrm{x}^4+2\).
2 : \((-2)^4-(-2)^2+12=16-4+12=24 \neq 0\)
\(\therefore(\mathrm{x}+2)\) is not the factor of \(\mathrm{x}^4-\mathrm{x}^2+12\)
3 : \((-2)^4-2(-2)^3-(-2)+2=16+16+2+2\)
\(=36 \neq 0\)
\(\therefore(\mathrm{x}+2)\) is not the factor of \(\mathrm{x}^4-2 \mathrm{x}^3-\mathrm{x}+2\)
4 : \((-2)^4+2(-2)^3-(-2)-2=16-16+2-2=0\)
\(\therefore(x+2)\) is the factor of \(\mathrm{x}^4+2 \mathrm{x}^3-\mathrm{x}-2\)
Complex Numbers and Quadratic Equation

118050 The number of solutions of \(\sqrt{4-x}+\sqrt{x+9}=5\) is

1 0
2 1
3 2
4 3
Complex Numbers and Quadratic Equation

118053 If \(\alpha\) and \(\beta\) are roots of the equation \(x^2+x+1\) \(=0\), then \(\alpha^2+\beta^2\) is

1 1
2 \(\frac{-1-\mathrm{i} \sqrt{3}}{2}\)
3 \(\frac{-1+\mathrm{i} \sqrt{3}}{2}\)
4 -1
Complex Numbers and Quadratic Equation

118054 If \(\alpha, \beta, \gamma\) are the roots of the equation \(x^3+4 x+2=0\), then \(\alpha^3+\beta^3+\gamma^3=\)

1 -6
2 2
3 6
4 -2
Complex Numbers and Quadratic Equation

118083 The number of roots of the equation \(|x|^2-7|x|+12=0\) is

1 1
2 2
3 3
4 4
Complex Numbers and Quadratic Equation

118049 \(x+2\) is a factor of

1 : \((-2)^4+2=16+2=18 \neq 0\)
\(\therefore(\mathrm{x}+2)\) is not the factor of \(\mathrm{x}^4+2\).
2 : \((-2)^4-(-2)^2+12=16-4+12=24 \neq 0\)
\(\therefore(\mathrm{x}+2)\) is not the factor of \(\mathrm{x}^4-\mathrm{x}^2+12\)
3 : \((-2)^4-2(-2)^3-(-2)+2=16+16+2+2\)
\(=36 \neq 0\)
\(\therefore(\mathrm{x}+2)\) is not the factor of \(\mathrm{x}^4-2 \mathrm{x}^3-\mathrm{x}+2\)
4 : \((-2)^4+2(-2)^3-(-2)-2=16-16+2-2=0\)
\(\therefore(x+2)\) is the factor of \(\mathrm{x}^4+2 \mathrm{x}^3-\mathrm{x}-2\)
Complex Numbers and Quadratic Equation

118050 The number of solutions of \(\sqrt{4-x}+\sqrt{x+9}=5\) is

1 0
2 1
3 2
4 3
Complex Numbers and Quadratic Equation

118053 If \(\alpha\) and \(\beta\) are roots of the equation \(x^2+x+1\) \(=0\), then \(\alpha^2+\beta^2\) is

1 1
2 \(\frac{-1-\mathrm{i} \sqrt{3}}{2}\)
3 \(\frac{-1+\mathrm{i} \sqrt{3}}{2}\)
4 -1
Complex Numbers and Quadratic Equation

118054 If \(\alpha, \beta, \gamma\) are the roots of the equation \(x^3+4 x+2=0\), then \(\alpha^3+\beta^3+\gamma^3=\)

1 -6
2 2
3 6
4 -2
Complex Numbers and Quadratic Equation

118083 The number of roots of the equation \(|x|^2-7|x|+12=0\) is

1 1
2 2
3 3
4 4
Complex Numbers and Quadratic Equation

118049 \(x+2\) is a factor of

1 : \((-2)^4+2=16+2=18 \neq 0\)
\(\therefore(\mathrm{x}+2)\) is not the factor of \(\mathrm{x}^4+2\).
2 : \((-2)^4-(-2)^2+12=16-4+12=24 \neq 0\)
\(\therefore(\mathrm{x}+2)\) is not the factor of \(\mathrm{x}^4-\mathrm{x}^2+12\)
3 : \((-2)^4-2(-2)^3-(-2)+2=16+16+2+2\)
\(=36 \neq 0\)
\(\therefore(\mathrm{x}+2)\) is not the factor of \(\mathrm{x}^4-2 \mathrm{x}^3-\mathrm{x}+2\)
4 : \((-2)^4+2(-2)^3-(-2)-2=16-16+2-2=0\)
\(\therefore(x+2)\) is the factor of \(\mathrm{x}^4+2 \mathrm{x}^3-\mathrm{x}-2\)
Complex Numbers and Quadratic Equation

118050 The number of solutions of \(\sqrt{4-x}+\sqrt{x+9}=5\) is

1 0
2 1
3 2
4 3
Complex Numbers and Quadratic Equation

118053 If \(\alpha\) and \(\beta\) are roots of the equation \(x^2+x+1\) \(=0\), then \(\alpha^2+\beta^2\) is

1 1
2 \(\frac{-1-\mathrm{i} \sqrt{3}}{2}\)
3 \(\frac{-1+\mathrm{i} \sqrt{3}}{2}\)
4 -1
Complex Numbers and Quadratic Equation

118054 If \(\alpha, \beta, \gamma\) are the roots of the equation \(x^3+4 x+2=0\), then \(\alpha^3+\beta^3+\gamma^3=\)

1 -6
2 2
3 6
4 -2
Complex Numbers and Quadratic Equation

118083 The number of roots of the equation \(|x|^2-7|x|+12=0\) is

1 1
2 2
3 3
4 4
Complex Numbers and Quadratic Equation

118049 \(x+2\) is a factor of

1 : \((-2)^4+2=16+2=18 \neq 0\)
\(\therefore(\mathrm{x}+2)\) is not the factor of \(\mathrm{x}^4+2\).
2 : \((-2)^4-(-2)^2+12=16-4+12=24 \neq 0\)
\(\therefore(\mathrm{x}+2)\) is not the factor of \(\mathrm{x}^4-\mathrm{x}^2+12\)
3 : \((-2)^4-2(-2)^3-(-2)+2=16+16+2+2\)
\(=36 \neq 0\)
\(\therefore(\mathrm{x}+2)\) is not the factor of \(\mathrm{x}^4-2 \mathrm{x}^3-\mathrm{x}+2\)
4 : \((-2)^4+2(-2)^3-(-2)-2=16-16+2-2=0\)
\(\therefore(x+2)\) is the factor of \(\mathrm{x}^4+2 \mathrm{x}^3-\mathrm{x}-2\)
Complex Numbers and Quadratic Equation

118050 The number of solutions of \(\sqrt{4-x}+\sqrt{x+9}=5\) is

1 0
2 1
3 2
4 3
Complex Numbers and Quadratic Equation

118053 If \(\alpha\) and \(\beta\) are roots of the equation \(x^2+x+1\) \(=0\), then \(\alpha^2+\beta^2\) is

1 1
2 \(\frac{-1-\mathrm{i} \sqrt{3}}{2}\)
3 \(\frac{-1+\mathrm{i} \sqrt{3}}{2}\)
4 -1
Complex Numbers and Quadratic Equation

118054 If \(\alpha, \beta, \gamma\) are the roots of the equation \(x^3+4 x+2=0\), then \(\alpha^3+\beta^3+\gamma^3=\)

1 -6
2 2
3 6
4 -2
Complex Numbers and Quadratic Equation

118083 The number of roots of the equation \(|x|^2-7|x|+12=0\) is

1 1
2 2
3 3
4 4
Complex Numbers and Quadratic Equation

118049 \(x+2\) is a factor of

1 : \((-2)^4+2=16+2=18 \neq 0\)
\(\therefore(\mathrm{x}+2)\) is not the factor of \(\mathrm{x}^4+2\).
2 : \((-2)^4-(-2)^2+12=16-4+12=24 \neq 0\)
\(\therefore(\mathrm{x}+2)\) is not the factor of \(\mathrm{x}^4-\mathrm{x}^2+12\)
3 : \((-2)^4-2(-2)^3-(-2)+2=16+16+2+2\)
\(=36 \neq 0\)
\(\therefore(\mathrm{x}+2)\) is not the factor of \(\mathrm{x}^4-2 \mathrm{x}^3-\mathrm{x}+2\)
4 : \((-2)^4+2(-2)^3-(-2)-2=16-16+2-2=0\)
\(\therefore(x+2)\) is the factor of \(\mathrm{x}^4+2 \mathrm{x}^3-\mathrm{x}-2\)
Complex Numbers and Quadratic Equation

118050 The number of solutions of \(\sqrt{4-x}+\sqrt{x+9}=5\) is

1 0
2 1
3 2
4 3