117960
The region of the argand diagram defined by \(|\mathbf{z}-\mathbf{1}|+|\mathbf{z}+\mathbf{1}| \leq 4\) is
1 Interior of an ellipse
2 exterior of a circle
3 interior and bondry of an ellipse
4 interior of a circle
Explanation:
C Let, \(z=x+\) iy Given, \(|z-1|+|z+1| \leq 4\) \(\mid x+\text { iy }-1|+| x+i y+1 \mid \leq 4\) \(\sqrt{(x-1)^2+y^2}+\sqrt{(x+1)^2+y^2} \leq 4\) \(\sqrt{(x-1)^2+y^2} \leq 4-\sqrt{(x+1)^2+y^2}\) Squaring on both side, \((x-1)^2+y^2 \leq\left(4-\sqrt{(x+1)^2+y^2}\right)^2\) \(x^2+1-2 x+y^2 \leq 16+x^2+1+2 x+y^2\) \(-8 \sqrt{(x+1)^2+y^2}\) \(8 \sqrt{(x+1)^2+y^2} \leq 4 x+16\) \(4\left[(x+1)^2+y^2\right] \leq(x+4)^2\) \(4 x^2+4+8 x+4 y^2 \leq x^2+16+8 x\) \(3 x^2+4 y^2 \leq 12\) \(\frac{x^2}{4}+\frac{y^2}{3} \leq 1\) Which is an ellipse. So, the region is on the bondry and interior of ellipse.
SRM JEEE-2011
Complex Numbers and Quadratic Equation
117961
The real part of \((1-\cos \theta+i \sin \theta)^{-1}\) is
117960
The region of the argand diagram defined by \(|\mathbf{z}-\mathbf{1}|+|\mathbf{z}+\mathbf{1}| \leq 4\) is
1 Interior of an ellipse
2 exterior of a circle
3 interior and bondry of an ellipse
4 interior of a circle
Explanation:
C Let, \(z=x+\) iy Given, \(|z-1|+|z+1| \leq 4\) \(\mid x+\text { iy }-1|+| x+i y+1 \mid \leq 4\) \(\sqrt{(x-1)^2+y^2}+\sqrt{(x+1)^2+y^2} \leq 4\) \(\sqrt{(x-1)^2+y^2} \leq 4-\sqrt{(x+1)^2+y^2}\) Squaring on both side, \((x-1)^2+y^2 \leq\left(4-\sqrt{(x+1)^2+y^2}\right)^2\) \(x^2+1-2 x+y^2 \leq 16+x^2+1+2 x+y^2\) \(-8 \sqrt{(x+1)^2+y^2}\) \(8 \sqrt{(x+1)^2+y^2} \leq 4 x+16\) \(4\left[(x+1)^2+y^2\right] \leq(x+4)^2\) \(4 x^2+4+8 x+4 y^2 \leq x^2+16+8 x\) \(3 x^2+4 y^2 \leq 12\) \(\frac{x^2}{4}+\frac{y^2}{3} \leq 1\) Which is an ellipse. So, the region is on the bondry and interior of ellipse.
SRM JEEE-2011
Complex Numbers and Quadratic Equation
117961
The real part of \((1-\cos \theta+i \sin \theta)^{-1}\) is
117960
The region of the argand diagram defined by \(|\mathbf{z}-\mathbf{1}|+|\mathbf{z}+\mathbf{1}| \leq 4\) is
1 Interior of an ellipse
2 exterior of a circle
3 interior and bondry of an ellipse
4 interior of a circle
Explanation:
C Let, \(z=x+\) iy Given, \(|z-1|+|z+1| \leq 4\) \(\mid x+\text { iy }-1|+| x+i y+1 \mid \leq 4\) \(\sqrt{(x-1)^2+y^2}+\sqrt{(x+1)^2+y^2} \leq 4\) \(\sqrt{(x-1)^2+y^2} \leq 4-\sqrt{(x+1)^2+y^2}\) Squaring on both side, \((x-1)^2+y^2 \leq\left(4-\sqrt{(x+1)^2+y^2}\right)^2\) \(x^2+1-2 x+y^2 \leq 16+x^2+1+2 x+y^2\) \(-8 \sqrt{(x+1)^2+y^2}\) \(8 \sqrt{(x+1)^2+y^2} \leq 4 x+16\) \(4\left[(x+1)^2+y^2\right] \leq(x+4)^2\) \(4 x^2+4+8 x+4 y^2 \leq x^2+16+8 x\) \(3 x^2+4 y^2 \leq 12\) \(\frac{x^2}{4}+\frac{y^2}{3} \leq 1\) Which is an ellipse. So, the region is on the bondry and interior of ellipse.
SRM JEEE-2011
Complex Numbers and Quadratic Equation
117961
The real part of \((1-\cos \theta+i \sin \theta)^{-1}\) is
117960
The region of the argand diagram defined by \(|\mathbf{z}-\mathbf{1}|+|\mathbf{z}+\mathbf{1}| \leq 4\) is
1 Interior of an ellipse
2 exterior of a circle
3 interior and bondry of an ellipse
4 interior of a circle
Explanation:
C Let, \(z=x+\) iy Given, \(|z-1|+|z+1| \leq 4\) \(\mid x+\text { iy }-1|+| x+i y+1 \mid \leq 4\) \(\sqrt{(x-1)^2+y^2}+\sqrt{(x+1)^2+y^2} \leq 4\) \(\sqrt{(x-1)^2+y^2} \leq 4-\sqrt{(x+1)^2+y^2}\) Squaring on both side, \((x-1)^2+y^2 \leq\left(4-\sqrt{(x+1)^2+y^2}\right)^2\) \(x^2+1-2 x+y^2 \leq 16+x^2+1+2 x+y^2\) \(-8 \sqrt{(x+1)^2+y^2}\) \(8 \sqrt{(x+1)^2+y^2} \leq 4 x+16\) \(4\left[(x+1)^2+y^2\right] \leq(x+4)^2\) \(4 x^2+4+8 x+4 y^2 \leq x^2+16+8 x\) \(3 x^2+4 y^2 \leq 12\) \(\frac{x^2}{4}+\frac{y^2}{3} \leq 1\) Which is an ellipse. So, the region is on the bondry and interior of ellipse.
SRM JEEE-2011
Complex Numbers and Quadratic Equation
117961
The real part of \((1-\cos \theta+i \sin \theta)^{-1}\) is
117960
The region of the argand diagram defined by \(|\mathbf{z}-\mathbf{1}|+|\mathbf{z}+\mathbf{1}| \leq 4\) is
1 Interior of an ellipse
2 exterior of a circle
3 interior and bondry of an ellipse
4 interior of a circle
Explanation:
C Let, \(z=x+\) iy Given, \(|z-1|+|z+1| \leq 4\) \(\mid x+\text { iy }-1|+| x+i y+1 \mid \leq 4\) \(\sqrt{(x-1)^2+y^2}+\sqrt{(x+1)^2+y^2} \leq 4\) \(\sqrt{(x-1)^2+y^2} \leq 4-\sqrt{(x+1)^2+y^2}\) Squaring on both side, \((x-1)^2+y^2 \leq\left(4-\sqrt{(x+1)^2+y^2}\right)^2\) \(x^2+1-2 x+y^2 \leq 16+x^2+1+2 x+y^2\) \(-8 \sqrt{(x+1)^2+y^2}\) \(8 \sqrt{(x+1)^2+y^2} \leq 4 x+16\) \(4\left[(x+1)^2+y^2\right] \leq(x+4)^2\) \(4 x^2+4+8 x+4 y^2 \leq x^2+16+8 x\) \(3 x^2+4 y^2 \leq 12\) \(\frac{x^2}{4}+\frac{y^2}{3} \leq 1\) Which is an ellipse. So, the region is on the bondry and interior of ellipse.
SRM JEEE-2011
Complex Numbers and Quadratic Equation
117961
The real part of \((1-\cos \theta+i \sin \theta)^{-1}\) is