Concepts of Complex Numbers
Complex Numbers and Quadratic Equation

117505 If \( \vert z+4 \vert \leq 3\), then the greatest and the least value of \( \vert z+1 \vert \) are

1 \(-1,6\)
2 6,0
3 6,3
4 None of these
Complex Numbers and Quadratic Equation

117473 The smallest positive integral value of \(n\) for which \((1+\sqrt{3} i)^{1 / 2}\) is positive real, is

1 3
2 6
3 12
4 0
Complex Numbers and Quadratic Equation

117474 If \(\omega\) is an imaginary cube root of unity, then \(\left(1+\omega-\omega^2\right)^7\) equals

1 \(128 \omega\)
2 \(-128 \omega\)
3 \(128 \omega^2\)
4 \(-128 \omega^2\)
Complex Numbers and Quadratic Equation

117475 If \(z=\frac{7-i}{3-4 i}\) then \(z^{14}\) equals

1 \(2^7\)
2 \(2^7 \mathrm{i}\)
3 \(-2^7 \mathrm{i}\)
4 none of these
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Complex Numbers and Quadratic Equation

117505 If \( \vert z+4 \vert \leq 3\), then the greatest and the least value of \( \vert z+1 \vert \) are

1 \(-1,6\)
2 6,0
3 6,3
4 None of these
Complex Numbers and Quadratic Equation

117473 The smallest positive integral value of \(n\) for which \((1+\sqrt{3} i)^{1 / 2}\) is positive real, is

1 3
2 6
3 12
4 0
Complex Numbers and Quadratic Equation

117474 If \(\omega\) is an imaginary cube root of unity, then \(\left(1+\omega-\omega^2\right)^7\) equals

1 \(128 \omega\)
2 \(-128 \omega\)
3 \(128 \omega^2\)
4 \(-128 \omega^2\)
Complex Numbers and Quadratic Equation

117475 If \(z=\frac{7-i}{3-4 i}\) then \(z^{14}\) equals

1 \(2^7\)
2 \(2^7 \mathrm{i}\)
3 \(-2^7 \mathrm{i}\)
4 none of these
Complex Numbers and Quadratic Equation

117505 If \( \vert z+4 \vert \leq 3\), then the greatest and the least value of \( \vert z+1 \vert \) are

1 \(-1,6\)
2 6,0
3 6,3
4 None of these
Complex Numbers and Quadratic Equation

117473 The smallest positive integral value of \(n\) for which \((1+\sqrt{3} i)^{1 / 2}\) is positive real, is

1 3
2 6
3 12
4 0
Complex Numbers and Quadratic Equation

117474 If \(\omega\) is an imaginary cube root of unity, then \(\left(1+\omega-\omega^2\right)^7\) equals

1 \(128 \omega\)
2 \(-128 \omega\)
3 \(128 \omega^2\)
4 \(-128 \omega^2\)
Complex Numbers and Quadratic Equation

117475 If \(z=\frac{7-i}{3-4 i}\) then \(z^{14}\) equals

1 \(2^7\)
2 \(2^7 \mathrm{i}\)
3 \(-2^7 \mathrm{i}\)
4 none of these
Complex Numbers and Quadratic Equation

117505 If \( \vert z+4 \vert \leq 3\), then the greatest and the least value of \( \vert z+1 \vert \) are

1 \(-1,6\)
2 6,0
3 6,3
4 None of these
Complex Numbers and Quadratic Equation

117473 The smallest positive integral value of \(n\) for which \((1+\sqrt{3} i)^{1 / 2}\) is positive real, is

1 3
2 6
3 12
4 0
Complex Numbers and Quadratic Equation

117474 If \(\omega\) is an imaginary cube root of unity, then \(\left(1+\omega-\omega^2\right)^7\) equals

1 \(128 \omega\)
2 \(-128 \omega\)
3 \(128 \omega^2\)
4 \(-128 \omega^2\)
Complex Numbers and Quadratic Equation

117475 If \(z=\frac{7-i}{3-4 i}\) then \(z^{14}\) equals

1 \(2^7\)
2 \(2^7 \mathrm{i}\)
3 \(-2^7 \mathrm{i}\)
4 none of these