Concepts of Complex Numbers
Complex Numbers and Quadratic Equation

117466 If \(\mathrm{a}=\cos \theta+i \sin \theta\), then \(\frac{1+\mathbf{a}}{1-\mathbf{a}}=\)

1 \(\cot \theta\)
2 \(\cot \theta / 2\)
3 \(i \cot \theta / 2\)
4 \(i \tan \theta / 2\)
Complex Numbers and Quadratic Equation

117467 \((16)^{1 / 4}\) is equal to

1 \(\pm 2, \pm 2 \mathrm{i}\)
2 \(\pm \sqrt{2}(1 \pm \mathrm{i})\)
3 \(\pm 2(1 \pm i)\)
4 None of these
Complex Numbers and Quadratic Equation

117469 If \((x-i y)^{1 / 3}=a-i b\), then \(\frac{x}{a}+\frac{y}{b}\) is equal to

1 \(-2\left(a^2+b^2\right)\)
2 \(4(a+b)\)
3 \(4(a-b)\)
4 \(4 \mathrm{ab}\)
Complex Numbers and Quadratic Equation

117470 If \((a+i b)(c+i d)(e+i f)(g+i h)=A+i B\), then \(\left(a^2+b^2\right)\left(c^2+d^2\right)\left(e^2+f^2\right)\left(g^2+h^2\right)=\)

1 \(\mathrm{A}^2+\mathrm{B}^2\)
2 \(\mathrm{A}^2-\mathrm{B}^2\)
3 \(\mathrm{A}^2\)
4 \(\mathrm{B}^2\)
Complex Numbers and Quadratic Equation

117471 \(\quad(z+a)(\bar{z}+a)\), where \(a\) is real, is equivalent to

1 \(|z-a|\)
2 \(z^2+a^2\)
3 \(|z+a|^2\)
4 None of these
Complex Numbers and Quadratic Equation

117466 If \(\mathrm{a}=\cos \theta+i \sin \theta\), then \(\frac{1+\mathbf{a}}{1-\mathbf{a}}=\)

1 \(\cot \theta\)
2 \(\cot \theta / 2\)
3 \(i \cot \theta / 2\)
4 \(i \tan \theta / 2\)
Complex Numbers and Quadratic Equation

117467 \((16)^{1 / 4}\) is equal to

1 \(\pm 2, \pm 2 \mathrm{i}\)
2 \(\pm \sqrt{2}(1 \pm \mathrm{i})\)
3 \(\pm 2(1 \pm i)\)
4 None of these
Complex Numbers and Quadratic Equation

117469 If \((x-i y)^{1 / 3}=a-i b\), then \(\frac{x}{a}+\frac{y}{b}\) is equal to

1 \(-2\left(a^2+b^2\right)\)
2 \(4(a+b)\)
3 \(4(a-b)\)
4 \(4 \mathrm{ab}\)
Complex Numbers and Quadratic Equation

117470 If \((a+i b)(c+i d)(e+i f)(g+i h)=A+i B\), then \(\left(a^2+b^2\right)\left(c^2+d^2\right)\left(e^2+f^2\right)\left(g^2+h^2\right)=\)

1 \(\mathrm{A}^2+\mathrm{B}^2\)
2 \(\mathrm{A}^2-\mathrm{B}^2\)
3 \(\mathrm{A}^2\)
4 \(\mathrm{B}^2\)
Complex Numbers and Quadratic Equation

117471 \(\quad(z+a)(\bar{z}+a)\), where \(a\) is real, is equivalent to

1 \(|z-a|\)
2 \(z^2+a^2\)
3 \(|z+a|^2\)
4 None of these
Complex Numbers and Quadratic Equation

117466 If \(\mathrm{a}=\cos \theta+i \sin \theta\), then \(\frac{1+\mathbf{a}}{1-\mathbf{a}}=\)

1 \(\cot \theta\)
2 \(\cot \theta / 2\)
3 \(i \cot \theta / 2\)
4 \(i \tan \theta / 2\)
Complex Numbers and Quadratic Equation

117467 \((16)^{1 / 4}\) is equal to

1 \(\pm 2, \pm 2 \mathrm{i}\)
2 \(\pm \sqrt{2}(1 \pm \mathrm{i})\)
3 \(\pm 2(1 \pm i)\)
4 None of these
Complex Numbers and Quadratic Equation

117469 If \((x-i y)^{1 / 3}=a-i b\), then \(\frac{x}{a}+\frac{y}{b}\) is equal to

1 \(-2\left(a^2+b^2\right)\)
2 \(4(a+b)\)
3 \(4(a-b)\)
4 \(4 \mathrm{ab}\)
Complex Numbers and Quadratic Equation

117470 If \((a+i b)(c+i d)(e+i f)(g+i h)=A+i B\), then \(\left(a^2+b^2\right)\left(c^2+d^2\right)\left(e^2+f^2\right)\left(g^2+h^2\right)=\)

1 \(\mathrm{A}^2+\mathrm{B}^2\)
2 \(\mathrm{A}^2-\mathrm{B}^2\)
3 \(\mathrm{A}^2\)
4 \(\mathrm{B}^2\)
Complex Numbers and Quadratic Equation

117471 \(\quad(z+a)(\bar{z}+a)\), where \(a\) is real, is equivalent to

1 \(|z-a|\)
2 \(z^2+a^2\)
3 \(|z+a|^2\)
4 None of these
Complex Numbers and Quadratic Equation

117466 If \(\mathrm{a}=\cos \theta+i \sin \theta\), then \(\frac{1+\mathbf{a}}{1-\mathbf{a}}=\)

1 \(\cot \theta\)
2 \(\cot \theta / 2\)
3 \(i \cot \theta / 2\)
4 \(i \tan \theta / 2\)
Complex Numbers and Quadratic Equation

117467 \((16)^{1 / 4}\) is equal to

1 \(\pm 2, \pm 2 \mathrm{i}\)
2 \(\pm \sqrt{2}(1 \pm \mathrm{i})\)
3 \(\pm 2(1 \pm i)\)
4 None of these
Complex Numbers and Quadratic Equation

117469 If \((x-i y)^{1 / 3}=a-i b\), then \(\frac{x}{a}+\frac{y}{b}\) is equal to

1 \(-2\left(a^2+b^2\right)\)
2 \(4(a+b)\)
3 \(4(a-b)\)
4 \(4 \mathrm{ab}\)
Complex Numbers and Quadratic Equation

117470 If \((a+i b)(c+i d)(e+i f)(g+i h)=A+i B\), then \(\left(a^2+b^2\right)\left(c^2+d^2\right)\left(e^2+f^2\right)\left(g^2+h^2\right)=\)

1 \(\mathrm{A}^2+\mathrm{B}^2\)
2 \(\mathrm{A}^2-\mathrm{B}^2\)
3 \(\mathrm{A}^2\)
4 \(\mathrm{B}^2\)
Complex Numbers and Quadratic Equation

117471 \(\quad(z+a)(\bar{z}+a)\), where \(a\) is real, is equivalent to

1 \(|z-a|\)
2 \(z^2+a^2\)
3 \(|z+a|^2\)
4 None of these
Complex Numbers and Quadratic Equation

117466 If \(\mathrm{a}=\cos \theta+i \sin \theta\), then \(\frac{1+\mathbf{a}}{1-\mathbf{a}}=\)

1 \(\cot \theta\)
2 \(\cot \theta / 2\)
3 \(i \cot \theta / 2\)
4 \(i \tan \theta / 2\)
Complex Numbers and Quadratic Equation

117467 \((16)^{1 / 4}\) is equal to

1 \(\pm 2, \pm 2 \mathrm{i}\)
2 \(\pm \sqrt{2}(1 \pm \mathrm{i})\)
3 \(\pm 2(1 \pm i)\)
4 None of these
Complex Numbers and Quadratic Equation

117469 If \((x-i y)^{1 / 3}=a-i b\), then \(\frac{x}{a}+\frac{y}{b}\) is equal to

1 \(-2\left(a^2+b^2\right)\)
2 \(4(a+b)\)
3 \(4(a-b)\)
4 \(4 \mathrm{ab}\)
Complex Numbers and Quadratic Equation

117470 If \((a+i b)(c+i d)(e+i f)(g+i h)=A+i B\), then \(\left(a^2+b^2\right)\left(c^2+d^2\right)\left(e^2+f^2\right)\left(g^2+h^2\right)=\)

1 \(\mathrm{A}^2+\mathrm{B}^2\)
2 \(\mathrm{A}^2-\mathrm{B}^2\)
3 \(\mathrm{A}^2\)
4 \(\mathrm{B}^2\)
Complex Numbers and Quadratic Equation

117471 \(\quad(z+a)(\bar{z}+a)\), where \(a\) is real, is equivalent to

1 \(|z-a|\)
2 \(z^2+a^2\)
3 \(|z+a|^2\)
4 None of these