Energy of Oscillation
Oscillations

140406 An elastic spring of unstretched length $L$ and force constant $K$ is stretched by a small length $x$. It is further stretched by another small length $y$. Work done during the second stretching is

1 $\frac{\mathrm{ky}}{2}(\mathrm{x}+2 \mathrm{y})$
2 $\frac{\mathrm{k}}{2}(2 \mathrm{x}+\mathrm{y})$
3 $\operatorname{ky}(x+2 y)$
4 $\frac{\mathrm{ky}}{2}(2 \mathrm{x}+\mathrm{y})$
Oscillations

140408 The potential energy of a simple harmonic oscillator when the particle is half way to its end point is

1 $\frac{1}{4} \mathrm{E}$
2 $\frac{1}{2} \mathrm{E}$
3 $\frac{2}{3} \mathrm{E}$
4 $\frac{1}{8} \mathrm{E}$
Oscillations

140355 A vertical spring with force constant $k$ is fixed on a table. A ball of mass $m$ at a height $h$ above the free upper end of the spring falls vertically on the spring, so that the spring is compressed by a distance $d$. The net work done in the process is

1 $\operatorname{mg}(\mathrm{h}+\mathrm{d})+\frac{1}{2} \mathrm{kd}^{2}$
2 $m g(h+d)-\frac{1}{2} \mathrm{kd}^{2}$
3 $\mathrm{mg}(\mathrm{h}-\mathrm{d})-\frac{1}{2} \mathrm{kd}^{2}$
4 $\mathrm{mg}(\mathrm{h}-\mathrm{d})+\frac{1}{2} \mathrm{kd}^{2}$
Oscillations

140362 A body executes simple harmonic motion with an amplitude $A$. At what displacement, from the mean position, is the potential energy of the body one fourth of its total energy?

1 $\frac{\mathrm{A}}{4}$
2 $\frac{\mathrm{A}}{2}$
3 $\frac{3 \mathrm{~A}}{4}$
4 $3 \mathrm{~A}$
Oscillations

140406 An elastic spring of unstretched length $L$ and force constant $K$ is stretched by a small length $x$. It is further stretched by another small length $y$. Work done during the second stretching is

1 $\frac{\mathrm{ky}}{2}(\mathrm{x}+2 \mathrm{y})$
2 $\frac{\mathrm{k}}{2}(2 \mathrm{x}+\mathrm{y})$
3 $\operatorname{ky}(x+2 y)$
4 $\frac{\mathrm{ky}}{2}(2 \mathrm{x}+\mathrm{y})$
Oscillations

140408 The potential energy of a simple harmonic oscillator when the particle is half way to its end point is

1 $\frac{1}{4} \mathrm{E}$
2 $\frac{1}{2} \mathrm{E}$
3 $\frac{2}{3} \mathrm{E}$
4 $\frac{1}{8} \mathrm{E}$
Oscillations

140355 A vertical spring with force constant $k$ is fixed on a table. A ball of mass $m$ at a height $h$ above the free upper end of the spring falls vertically on the spring, so that the spring is compressed by a distance $d$. The net work done in the process is

1 $\operatorname{mg}(\mathrm{h}+\mathrm{d})+\frac{1}{2} \mathrm{kd}^{2}$
2 $m g(h+d)-\frac{1}{2} \mathrm{kd}^{2}$
3 $\mathrm{mg}(\mathrm{h}-\mathrm{d})-\frac{1}{2} \mathrm{kd}^{2}$
4 $\mathrm{mg}(\mathrm{h}-\mathrm{d})+\frac{1}{2} \mathrm{kd}^{2}$
Oscillations

140362 A body executes simple harmonic motion with an amplitude $A$. At what displacement, from the mean position, is the potential energy of the body one fourth of its total energy?

1 $\frac{\mathrm{A}}{4}$
2 $\frac{\mathrm{A}}{2}$
3 $\frac{3 \mathrm{~A}}{4}$
4 $3 \mathrm{~A}$
Oscillations

140406 An elastic spring of unstretched length $L$ and force constant $K$ is stretched by a small length $x$. It is further stretched by another small length $y$. Work done during the second stretching is

1 $\frac{\mathrm{ky}}{2}(\mathrm{x}+2 \mathrm{y})$
2 $\frac{\mathrm{k}}{2}(2 \mathrm{x}+\mathrm{y})$
3 $\operatorname{ky}(x+2 y)$
4 $\frac{\mathrm{ky}}{2}(2 \mathrm{x}+\mathrm{y})$
Oscillations

140408 The potential energy of a simple harmonic oscillator when the particle is half way to its end point is

1 $\frac{1}{4} \mathrm{E}$
2 $\frac{1}{2} \mathrm{E}$
3 $\frac{2}{3} \mathrm{E}$
4 $\frac{1}{8} \mathrm{E}$
Oscillations

140355 A vertical spring with force constant $k$ is fixed on a table. A ball of mass $m$ at a height $h$ above the free upper end of the spring falls vertically on the spring, so that the spring is compressed by a distance $d$. The net work done in the process is

1 $\operatorname{mg}(\mathrm{h}+\mathrm{d})+\frac{1}{2} \mathrm{kd}^{2}$
2 $m g(h+d)-\frac{1}{2} \mathrm{kd}^{2}$
3 $\mathrm{mg}(\mathrm{h}-\mathrm{d})-\frac{1}{2} \mathrm{kd}^{2}$
4 $\mathrm{mg}(\mathrm{h}-\mathrm{d})+\frac{1}{2} \mathrm{kd}^{2}$
Oscillations

140362 A body executes simple harmonic motion with an amplitude $A$. At what displacement, from the mean position, is the potential energy of the body one fourth of its total energy?

1 $\frac{\mathrm{A}}{4}$
2 $\frac{\mathrm{A}}{2}$
3 $\frac{3 \mathrm{~A}}{4}$
4 $3 \mathrm{~A}$
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Oscillations

140406 An elastic spring of unstretched length $L$ and force constant $K$ is stretched by a small length $x$. It is further stretched by another small length $y$. Work done during the second stretching is

1 $\frac{\mathrm{ky}}{2}(\mathrm{x}+2 \mathrm{y})$
2 $\frac{\mathrm{k}}{2}(2 \mathrm{x}+\mathrm{y})$
3 $\operatorname{ky}(x+2 y)$
4 $\frac{\mathrm{ky}}{2}(2 \mathrm{x}+\mathrm{y})$
Oscillations

140408 The potential energy of a simple harmonic oscillator when the particle is half way to its end point is

1 $\frac{1}{4} \mathrm{E}$
2 $\frac{1}{2} \mathrm{E}$
3 $\frac{2}{3} \mathrm{E}$
4 $\frac{1}{8} \mathrm{E}$
Oscillations

140355 A vertical spring with force constant $k$ is fixed on a table. A ball of mass $m$ at a height $h$ above the free upper end of the spring falls vertically on the spring, so that the spring is compressed by a distance $d$. The net work done in the process is

1 $\operatorname{mg}(\mathrm{h}+\mathrm{d})+\frac{1}{2} \mathrm{kd}^{2}$
2 $m g(h+d)-\frac{1}{2} \mathrm{kd}^{2}$
3 $\mathrm{mg}(\mathrm{h}-\mathrm{d})-\frac{1}{2} \mathrm{kd}^{2}$
4 $\mathrm{mg}(\mathrm{h}-\mathrm{d})+\frac{1}{2} \mathrm{kd}^{2}$
Oscillations

140362 A body executes simple harmonic motion with an amplitude $A$. At what displacement, from the mean position, is the potential energy of the body one fourth of its total energy?

1 $\frac{\mathrm{A}}{4}$
2 $\frac{\mathrm{A}}{2}$
3 $\frac{3 \mathrm{~A}}{4}$
4 $3 \mathrm{~A}$