Simple Harmonic Motion and Uniform Circular Motion
Oscillations

139997 For particle $P$ revolving round the centre $O$ with radius of circular path $\mathbf{r}$ and angular velocity $\omega$ as shown in below figure, the projection of OP on the $x$-axis at time $t$ is

1 $x(t)=r \cos \left(\omega t+\frac{\pi}{6}\right)$
2 $x(t)=r \cos (\omega t)$
3 $x(t)=r \sin \left(\omega t+\frac{\pi}{6}\right)$
4 $x(t)=r \cos \left(\omega t-\frac{\pi}{6} \omega\right)$
Oscillations

139999 In a linear simple harmonic motion (SHM)

1 (A), (B) and (C) only
2 (C) and (D) only
3 (A), (B) and (D) only
4 (A), (C) and (D) only
Oscillations

140000 The displacement of a particle executing SHM is given by $x=3 \sin \left[2 \pi t+\frac{\pi}{4}\right]$ where ' $x$ ' is in meters and ' $t$ ' is in seconds. The amplitude and maximum speed of the particle is

1 $3 \mathrm{~m}, 6 \pi \mathrm{ms}^{-1}$
2 $3 \mathrm{~m}, 8 \pi \mathrm{ms}^{-1}$
3 $3 \mathrm{~m}, 2 \pi \mathrm{ms}^{-1}$
4 $3 \mathrm{~m}, 4 \pi \mathrm{ms}^{-1}$
Oscillations

140001 A mass $m$ is performing linear simple harmonic motion, then which of the following graph represents correctly the variation of acceleration 'a' corresponding to linear velocity 'v' ?

1
2
3
4
Oscillations

140002 A particle of mass $m$ is executing oscillations about the origin on the $x$-axis. Its potential energy is
$\mathrm{U}(\mathrm{x})=\mathrm{k}|\mathrm{x}|^{3}$, where $\mathrm{k}$ is a positive constant. If the amplitude of oscillation is a, then the time period $T$ is .......

1 Proportional to $\frac{1}{\sqrt{\mathrm{a}}}$
2 Independent of a
3 Proportional to $\sqrt{\mathrm{a}}$
4 Proportional to $\mathrm{a}^{3 / 2}$
Oscillations

139997 For particle $P$ revolving round the centre $O$ with radius of circular path $\mathbf{r}$ and angular velocity $\omega$ as shown in below figure, the projection of OP on the $x$-axis at time $t$ is

1 $x(t)=r \cos \left(\omega t+\frac{\pi}{6}\right)$
2 $x(t)=r \cos (\omega t)$
3 $x(t)=r \sin \left(\omega t+\frac{\pi}{6}\right)$
4 $x(t)=r \cos \left(\omega t-\frac{\pi}{6} \omega\right)$
Oscillations

139999 In a linear simple harmonic motion (SHM)

1 (A), (B) and (C) only
2 (C) and (D) only
3 (A), (B) and (D) only
4 (A), (C) and (D) only
Oscillations

140000 The displacement of a particle executing SHM is given by $x=3 \sin \left[2 \pi t+\frac{\pi}{4}\right]$ where ' $x$ ' is in meters and ' $t$ ' is in seconds. The amplitude and maximum speed of the particle is

1 $3 \mathrm{~m}, 6 \pi \mathrm{ms}^{-1}$
2 $3 \mathrm{~m}, 8 \pi \mathrm{ms}^{-1}$
3 $3 \mathrm{~m}, 2 \pi \mathrm{ms}^{-1}$
4 $3 \mathrm{~m}, 4 \pi \mathrm{ms}^{-1}$
Oscillations

140001 A mass $m$ is performing linear simple harmonic motion, then which of the following graph represents correctly the variation of acceleration 'a' corresponding to linear velocity 'v' ?

1
2
3
4
Oscillations

140002 A particle of mass $m$ is executing oscillations about the origin on the $x$-axis. Its potential energy is
$\mathrm{U}(\mathrm{x})=\mathrm{k}|\mathrm{x}|^{3}$, where $\mathrm{k}$ is a positive constant. If the amplitude of oscillation is a, then the time period $T$ is .......

1 Proportional to $\frac{1}{\sqrt{\mathrm{a}}}$
2 Independent of a
3 Proportional to $\sqrt{\mathrm{a}}$
4 Proportional to $\mathrm{a}^{3 / 2}$
Oscillations

139997 For particle $P$ revolving round the centre $O$ with radius of circular path $\mathbf{r}$ and angular velocity $\omega$ as shown in below figure, the projection of OP on the $x$-axis at time $t$ is

1 $x(t)=r \cos \left(\omega t+\frac{\pi}{6}\right)$
2 $x(t)=r \cos (\omega t)$
3 $x(t)=r \sin \left(\omega t+\frac{\pi}{6}\right)$
4 $x(t)=r \cos \left(\omega t-\frac{\pi}{6} \omega\right)$
Oscillations

139999 In a linear simple harmonic motion (SHM)

1 (A), (B) and (C) only
2 (C) and (D) only
3 (A), (B) and (D) only
4 (A), (C) and (D) only
Oscillations

140000 The displacement of a particle executing SHM is given by $x=3 \sin \left[2 \pi t+\frac{\pi}{4}\right]$ where ' $x$ ' is in meters and ' $t$ ' is in seconds. The amplitude and maximum speed of the particle is

1 $3 \mathrm{~m}, 6 \pi \mathrm{ms}^{-1}$
2 $3 \mathrm{~m}, 8 \pi \mathrm{ms}^{-1}$
3 $3 \mathrm{~m}, 2 \pi \mathrm{ms}^{-1}$
4 $3 \mathrm{~m}, 4 \pi \mathrm{ms}^{-1}$
Oscillations

140001 A mass $m$ is performing linear simple harmonic motion, then which of the following graph represents correctly the variation of acceleration 'a' corresponding to linear velocity 'v' ?

1
2
3
4
Oscillations

140002 A particle of mass $m$ is executing oscillations about the origin on the $x$-axis. Its potential energy is
$\mathrm{U}(\mathrm{x})=\mathrm{k}|\mathrm{x}|^{3}$, where $\mathrm{k}$ is a positive constant. If the amplitude of oscillation is a, then the time period $T$ is .......

1 Proportional to $\frac{1}{\sqrt{\mathrm{a}}}$
2 Independent of a
3 Proportional to $\sqrt{\mathrm{a}}$
4 Proportional to $\mathrm{a}^{3 / 2}$
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Oscillations

139997 For particle $P$ revolving round the centre $O$ with radius of circular path $\mathbf{r}$ and angular velocity $\omega$ as shown in below figure, the projection of OP on the $x$-axis at time $t$ is

1 $x(t)=r \cos \left(\omega t+\frac{\pi}{6}\right)$
2 $x(t)=r \cos (\omega t)$
3 $x(t)=r \sin \left(\omega t+\frac{\pi}{6}\right)$
4 $x(t)=r \cos \left(\omega t-\frac{\pi}{6} \omega\right)$
Oscillations

139999 In a linear simple harmonic motion (SHM)

1 (A), (B) and (C) only
2 (C) and (D) only
3 (A), (B) and (D) only
4 (A), (C) and (D) only
Oscillations

140000 The displacement of a particle executing SHM is given by $x=3 \sin \left[2 \pi t+\frac{\pi}{4}\right]$ where ' $x$ ' is in meters and ' $t$ ' is in seconds. The amplitude and maximum speed of the particle is

1 $3 \mathrm{~m}, 6 \pi \mathrm{ms}^{-1}$
2 $3 \mathrm{~m}, 8 \pi \mathrm{ms}^{-1}$
3 $3 \mathrm{~m}, 2 \pi \mathrm{ms}^{-1}$
4 $3 \mathrm{~m}, 4 \pi \mathrm{ms}^{-1}$
Oscillations

140001 A mass $m$ is performing linear simple harmonic motion, then which of the following graph represents correctly the variation of acceleration 'a' corresponding to linear velocity 'v' ?

1
2
3
4
Oscillations

140002 A particle of mass $m$ is executing oscillations about the origin on the $x$-axis. Its potential energy is
$\mathrm{U}(\mathrm{x})=\mathrm{k}|\mathrm{x}|^{3}$, where $\mathrm{k}$ is a positive constant. If the amplitude of oscillation is a, then the time period $T$ is .......

1 Proportional to $\frac{1}{\sqrt{\mathrm{a}}}$
2 Independent of a
3 Proportional to $\sqrt{\mathrm{a}}$
4 Proportional to $\mathrm{a}^{3 / 2}$
Oscillations

139997 For particle $P$ revolving round the centre $O$ with radius of circular path $\mathbf{r}$ and angular velocity $\omega$ as shown in below figure, the projection of OP on the $x$-axis at time $t$ is

1 $x(t)=r \cos \left(\omega t+\frac{\pi}{6}\right)$
2 $x(t)=r \cos (\omega t)$
3 $x(t)=r \sin \left(\omega t+\frac{\pi}{6}\right)$
4 $x(t)=r \cos \left(\omega t-\frac{\pi}{6} \omega\right)$
Oscillations

139999 In a linear simple harmonic motion (SHM)

1 (A), (B) and (C) only
2 (C) and (D) only
3 (A), (B) and (D) only
4 (A), (C) and (D) only
Oscillations

140000 The displacement of a particle executing SHM is given by $x=3 \sin \left[2 \pi t+\frac{\pi}{4}\right]$ where ' $x$ ' is in meters and ' $t$ ' is in seconds. The amplitude and maximum speed of the particle is

1 $3 \mathrm{~m}, 6 \pi \mathrm{ms}^{-1}$
2 $3 \mathrm{~m}, 8 \pi \mathrm{ms}^{-1}$
3 $3 \mathrm{~m}, 2 \pi \mathrm{ms}^{-1}$
4 $3 \mathrm{~m}, 4 \pi \mathrm{ms}^{-1}$
Oscillations

140001 A mass $m$ is performing linear simple harmonic motion, then which of the following graph represents correctly the variation of acceleration 'a' corresponding to linear velocity 'v' ?

1
2
3
4
Oscillations

140002 A particle of mass $m$ is executing oscillations about the origin on the $x$-axis. Its potential energy is
$\mathrm{U}(\mathrm{x})=\mathrm{k}|\mathrm{x}|^{3}$, where $\mathrm{k}$ is a positive constant. If the amplitude of oscillation is a, then the time period $T$ is .......

1 Proportional to $\frac{1}{\sqrt{\mathrm{a}}}$
2 Independent of a
3 Proportional to $\sqrt{\mathrm{a}}$
4 Proportional to $\mathrm{a}^{3 / 2}$