Limits, Continuity and Differentiability
80250
If \(\sin y=x \sin (a+y)\), then \(\frac{d y}{d x}=\)
1 \(\frac{\sin \sqrt{a}}{\sin (a+y)}\)
2 \(\frac{\sin ^{2}(a+y)}{\sin a}\)
3 \(\frac{\sin (a+y)}{\sin a}\)
4 \(\frac{\cos (a+y)}{\cos a}\)
Explanation:
(B) : Given, \(\sin \mathrm{y}=\mathrm{x} \sin (\mathrm{a}+\mathrm{y})\)
\(x=\frac{\sin y}{\sin (a+y)} \Rightarrow \frac{\sin [(a+y)-a]}{\sin (a+y)}=x\)
\(\frac{\sin (a+y) \cos a-\cos (a+y) \sin a}{\sin (a+y)}=x\)
\(\cos a-\cot (a+y) \sin a=x\)
Differentiating both sides w.r.t. \(\mathrm{x}\)
\(0-\left[-\operatorname{cosec}^{2}(a+y) \frac{d y}{d x} \sin a+0\right]=1\)
\(\operatorname{cosec}^{2}(a+y) \frac{d y}{d x} \sin a=1\)
\(\frac{d y}{d x}\left[\frac{\sin a}{\sin ^{2}(a+y)}\right]=1 \Rightarrow \frac{d y}{d x}=\frac{\sin ^{2}(a+y)}{\sin a}\)