Finding Differentiability using Differentiation
Limits, Continuity and Differentiability

80194 The differential coefficient of \(\log _{10} x\) with respect to \(\log _{x} 10\) is

1 1
2 \(-\left(\log _{10} x\right)^{2}\)
3 \(\left(\log _{x} 10\right)^{2}\)
4 \(\frac{x^{2}}{100}\)
Limits, Continuity and Differentiability

80196 If \(y=\log \left(\frac{1-x^{2}}{1+x^{2}}\right)\), then \(\frac{d y}{d x}\) is equal to

1 \(\frac{4 x^{3}}{1-x^{4}}\)
2 \(\frac{-4 x^{3}}{1-x^{4}}\)
3 \(\frac{-4 \mathrm{x}}{1-\mathrm{x}^{4}}\)
4 \(\frac{1}{4-x^{4}}\)
Limits, Continuity and Differentiability

80197 If \(x=a \cos ^{3} \theta, y=a \sin ^{3} \theta\), then \(1+\left(\frac{d y}{d x}\right)^{2}\) is _.

1 \(\tan ^{2} \theta\)
2 1
3 \(\tan \theta\)
4 \(\sec ^{2} \theta\)
Limits, Continuity and Differentiability

80198 If the three functions \(f(x), g(x)\) and \(h(x)\) are such that \(h(x)=f(x) \cdot g(x)\) and \(f^{\prime}(x) \cdot g^{\prime}(x)=c\), where \(c\) is a constant, then \(\frac{\mathrm{f}^{\prime \prime}(\mathrm{x})}{\mathrm{f}(\mathrm{x})}+\frac{\mathrm{g}^{\prime \prime}(\mathrm{x})}{\mathrm{g}(\mathrm{x})}+\frac{2 \mathrm{c}}{\mathrm{f}(\mathrm{x}) \cdot \mathrm{g}(\mathrm{x})}\) is equal to

1 \(\frac{\mathrm{h}(\mathrm{x})}{\mathrm{h} "(\mathrm{x})}\)
2 h'(x).h"(x)
3 \(\frac{h(x)}{h^{\prime}(x)}\)
4 \(\frac{h "(x)}{h(x)}\)
Limits, Continuity and Differentiability

80199 If \(f(x)\) is an even functions and \(f^{\prime}(x)\) exists, then \(\mathbf{f}^{\prime}(\mathbf{e})+\mathbf{f}^{\prime}(-\mathbf{e})\) is

1 \(\geq 0\)
2 \(\lt 0\)
3 \(>0\)
4 0
Limits, Continuity and Differentiability

80194 The differential coefficient of \(\log _{10} x\) with respect to \(\log _{x} 10\) is

1 1
2 \(-\left(\log _{10} x\right)^{2}\)
3 \(\left(\log _{x} 10\right)^{2}\)
4 \(\frac{x^{2}}{100}\)
Limits, Continuity and Differentiability

80196 If \(y=\log \left(\frac{1-x^{2}}{1+x^{2}}\right)\), then \(\frac{d y}{d x}\) is equal to

1 \(\frac{4 x^{3}}{1-x^{4}}\)
2 \(\frac{-4 x^{3}}{1-x^{4}}\)
3 \(\frac{-4 \mathrm{x}}{1-\mathrm{x}^{4}}\)
4 \(\frac{1}{4-x^{4}}\)
Limits, Continuity and Differentiability

80197 If \(x=a \cos ^{3} \theta, y=a \sin ^{3} \theta\), then \(1+\left(\frac{d y}{d x}\right)^{2}\) is _.

1 \(\tan ^{2} \theta\)
2 1
3 \(\tan \theta\)
4 \(\sec ^{2} \theta\)
Limits, Continuity and Differentiability

80198 If the three functions \(f(x), g(x)\) and \(h(x)\) are such that \(h(x)=f(x) \cdot g(x)\) and \(f^{\prime}(x) \cdot g^{\prime}(x)=c\), where \(c\) is a constant, then \(\frac{\mathrm{f}^{\prime \prime}(\mathrm{x})}{\mathrm{f}(\mathrm{x})}+\frac{\mathrm{g}^{\prime \prime}(\mathrm{x})}{\mathrm{g}(\mathrm{x})}+\frac{2 \mathrm{c}}{\mathrm{f}(\mathrm{x}) \cdot \mathrm{g}(\mathrm{x})}\) is equal to

1 \(\frac{\mathrm{h}(\mathrm{x})}{\mathrm{h} "(\mathrm{x})}\)
2 h'(x).h"(x)
3 \(\frac{h(x)}{h^{\prime}(x)}\)
4 \(\frac{h "(x)}{h(x)}\)
Limits, Continuity and Differentiability

80199 If \(f(x)\) is an even functions and \(f^{\prime}(x)\) exists, then \(\mathbf{f}^{\prime}(\mathbf{e})+\mathbf{f}^{\prime}(-\mathbf{e})\) is

1 \(\geq 0\)
2 \(\lt 0\)
3 \(>0\)
4 0
Limits, Continuity and Differentiability

80194 The differential coefficient of \(\log _{10} x\) with respect to \(\log _{x} 10\) is

1 1
2 \(-\left(\log _{10} x\right)^{2}\)
3 \(\left(\log _{x} 10\right)^{2}\)
4 \(\frac{x^{2}}{100}\)
Limits, Continuity and Differentiability

80196 If \(y=\log \left(\frac{1-x^{2}}{1+x^{2}}\right)\), then \(\frac{d y}{d x}\) is equal to

1 \(\frac{4 x^{3}}{1-x^{4}}\)
2 \(\frac{-4 x^{3}}{1-x^{4}}\)
3 \(\frac{-4 \mathrm{x}}{1-\mathrm{x}^{4}}\)
4 \(\frac{1}{4-x^{4}}\)
Limits, Continuity and Differentiability

80197 If \(x=a \cos ^{3} \theta, y=a \sin ^{3} \theta\), then \(1+\left(\frac{d y}{d x}\right)^{2}\) is _.

1 \(\tan ^{2} \theta\)
2 1
3 \(\tan \theta\)
4 \(\sec ^{2} \theta\)
Limits, Continuity and Differentiability

80198 If the three functions \(f(x), g(x)\) and \(h(x)\) are such that \(h(x)=f(x) \cdot g(x)\) and \(f^{\prime}(x) \cdot g^{\prime}(x)=c\), where \(c\) is a constant, then \(\frac{\mathrm{f}^{\prime \prime}(\mathrm{x})}{\mathrm{f}(\mathrm{x})}+\frac{\mathrm{g}^{\prime \prime}(\mathrm{x})}{\mathrm{g}(\mathrm{x})}+\frac{2 \mathrm{c}}{\mathrm{f}(\mathrm{x}) \cdot \mathrm{g}(\mathrm{x})}\) is equal to

1 \(\frac{\mathrm{h}(\mathrm{x})}{\mathrm{h} "(\mathrm{x})}\)
2 h'(x).h"(x)
3 \(\frac{h(x)}{h^{\prime}(x)}\)
4 \(\frac{h "(x)}{h(x)}\)
Limits, Continuity and Differentiability

80199 If \(f(x)\) is an even functions and \(f^{\prime}(x)\) exists, then \(\mathbf{f}^{\prime}(\mathbf{e})+\mathbf{f}^{\prime}(-\mathbf{e})\) is

1 \(\geq 0\)
2 \(\lt 0\)
3 \(>0\)
4 0
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Limits, Continuity and Differentiability

80194 The differential coefficient of \(\log _{10} x\) with respect to \(\log _{x} 10\) is

1 1
2 \(-\left(\log _{10} x\right)^{2}\)
3 \(\left(\log _{x} 10\right)^{2}\)
4 \(\frac{x^{2}}{100}\)
Limits, Continuity and Differentiability

80196 If \(y=\log \left(\frac{1-x^{2}}{1+x^{2}}\right)\), then \(\frac{d y}{d x}\) is equal to

1 \(\frac{4 x^{3}}{1-x^{4}}\)
2 \(\frac{-4 x^{3}}{1-x^{4}}\)
3 \(\frac{-4 \mathrm{x}}{1-\mathrm{x}^{4}}\)
4 \(\frac{1}{4-x^{4}}\)
Limits, Continuity and Differentiability

80197 If \(x=a \cos ^{3} \theta, y=a \sin ^{3} \theta\), then \(1+\left(\frac{d y}{d x}\right)^{2}\) is _.

1 \(\tan ^{2} \theta\)
2 1
3 \(\tan \theta\)
4 \(\sec ^{2} \theta\)
Limits, Continuity and Differentiability

80198 If the three functions \(f(x), g(x)\) and \(h(x)\) are such that \(h(x)=f(x) \cdot g(x)\) and \(f^{\prime}(x) \cdot g^{\prime}(x)=c\), where \(c\) is a constant, then \(\frac{\mathrm{f}^{\prime \prime}(\mathrm{x})}{\mathrm{f}(\mathrm{x})}+\frac{\mathrm{g}^{\prime \prime}(\mathrm{x})}{\mathrm{g}(\mathrm{x})}+\frac{2 \mathrm{c}}{\mathrm{f}(\mathrm{x}) \cdot \mathrm{g}(\mathrm{x})}\) is equal to

1 \(\frac{\mathrm{h}(\mathrm{x})}{\mathrm{h} "(\mathrm{x})}\)
2 h'(x).h"(x)
3 \(\frac{h(x)}{h^{\prime}(x)}\)
4 \(\frac{h "(x)}{h(x)}\)
Limits, Continuity and Differentiability

80199 If \(f(x)\) is an even functions and \(f^{\prime}(x)\) exists, then \(\mathbf{f}^{\prime}(\mathbf{e})+\mathbf{f}^{\prime}(-\mathbf{e})\) is

1 \(\geq 0\)
2 \(\lt 0\)
3 \(>0\)
4 0
Limits, Continuity and Differentiability

80194 The differential coefficient of \(\log _{10} x\) with respect to \(\log _{x} 10\) is

1 1
2 \(-\left(\log _{10} x\right)^{2}\)
3 \(\left(\log _{x} 10\right)^{2}\)
4 \(\frac{x^{2}}{100}\)
Limits, Continuity and Differentiability

80196 If \(y=\log \left(\frac{1-x^{2}}{1+x^{2}}\right)\), then \(\frac{d y}{d x}\) is equal to

1 \(\frac{4 x^{3}}{1-x^{4}}\)
2 \(\frac{-4 x^{3}}{1-x^{4}}\)
3 \(\frac{-4 \mathrm{x}}{1-\mathrm{x}^{4}}\)
4 \(\frac{1}{4-x^{4}}\)
Limits, Continuity and Differentiability

80197 If \(x=a \cos ^{3} \theta, y=a \sin ^{3} \theta\), then \(1+\left(\frac{d y}{d x}\right)^{2}\) is _.

1 \(\tan ^{2} \theta\)
2 1
3 \(\tan \theta\)
4 \(\sec ^{2} \theta\)
Limits, Continuity and Differentiability

80198 If the three functions \(f(x), g(x)\) and \(h(x)\) are such that \(h(x)=f(x) \cdot g(x)\) and \(f^{\prime}(x) \cdot g^{\prime}(x)=c\), where \(c\) is a constant, then \(\frac{\mathrm{f}^{\prime \prime}(\mathrm{x})}{\mathrm{f}(\mathrm{x})}+\frac{\mathrm{g}^{\prime \prime}(\mathrm{x})}{\mathrm{g}(\mathrm{x})}+\frac{2 \mathrm{c}}{\mathrm{f}(\mathrm{x}) \cdot \mathrm{g}(\mathrm{x})}\) is equal to

1 \(\frac{\mathrm{h}(\mathrm{x})}{\mathrm{h} "(\mathrm{x})}\)
2 h'(x).h"(x)
3 \(\frac{h(x)}{h^{\prime}(x)}\)
4 \(\frac{h "(x)}{h(x)}\)
Limits, Continuity and Differentiability

80199 If \(f(x)\) is an even functions and \(f^{\prime}(x)\) exists, then \(\mathbf{f}^{\prime}(\mathbf{e})+\mathbf{f}^{\prime}(-\mathbf{e})\) is

1 \(\geq 0\)
2 \(\lt 0\)
3 \(>0\)
4 0