80198 If the three functions \(f(x), g(x)\) and \(h(x)\) are such that \(h(x)=f(x) \cdot g(x)\) and \(f^{\prime}(x) \cdot g^{\prime}(x)=c\), where \(c\) is a constant, then \(\frac{\mathrm{f}^{\prime \prime}(\mathrm{x})}{\mathrm{f}(\mathrm{x})}+\frac{\mathrm{g}^{\prime \prime}(\mathrm{x})}{\mathrm{g}(\mathrm{x})}+\frac{2 \mathrm{c}}{\mathrm{f}(\mathrm{x}) \cdot \mathrm{g}(\mathrm{x})}\) is equal to
80198 If the three functions \(f(x), g(x)\) and \(h(x)\) are such that \(h(x)=f(x) \cdot g(x)\) and \(f^{\prime}(x) \cdot g^{\prime}(x)=c\), where \(c\) is a constant, then \(\frac{\mathrm{f}^{\prime \prime}(\mathrm{x})}{\mathrm{f}(\mathrm{x})}+\frac{\mathrm{g}^{\prime \prime}(\mathrm{x})}{\mathrm{g}(\mathrm{x})}+\frac{2 \mathrm{c}}{\mathrm{f}(\mathrm{x}) \cdot \mathrm{g}(\mathrm{x})}\) is equal to
80198 If the three functions \(f(x), g(x)\) and \(h(x)\) are such that \(h(x)=f(x) \cdot g(x)\) and \(f^{\prime}(x) \cdot g^{\prime}(x)=c\), where \(c\) is a constant, then \(\frac{\mathrm{f}^{\prime \prime}(\mathrm{x})}{\mathrm{f}(\mathrm{x})}+\frac{\mathrm{g}^{\prime \prime}(\mathrm{x})}{\mathrm{g}(\mathrm{x})}+\frac{2 \mathrm{c}}{\mathrm{f}(\mathrm{x}) \cdot \mathrm{g}(\mathrm{x})}\) is equal to
80198 If the three functions \(f(x), g(x)\) and \(h(x)\) are such that \(h(x)=f(x) \cdot g(x)\) and \(f^{\prime}(x) \cdot g^{\prime}(x)=c\), where \(c\) is a constant, then \(\frac{\mathrm{f}^{\prime \prime}(\mathrm{x})}{\mathrm{f}(\mathrm{x})}+\frac{\mathrm{g}^{\prime \prime}(\mathrm{x})}{\mathrm{g}(\mathrm{x})}+\frac{2 \mathrm{c}}{\mathrm{f}(\mathrm{x}) \cdot \mathrm{g}(\mathrm{x})}\) is equal to
80198 If the three functions \(f(x), g(x)\) and \(h(x)\) are such that \(h(x)=f(x) \cdot g(x)\) and \(f^{\prime}(x) \cdot g^{\prime}(x)=c\), where \(c\) is a constant, then \(\frac{\mathrm{f}^{\prime \prime}(\mathrm{x})}{\mathrm{f}(\mathrm{x})}+\frac{\mathrm{g}^{\prime \prime}(\mathrm{x})}{\mathrm{g}(\mathrm{x})}+\frac{2 \mathrm{c}}{\mathrm{f}(\mathrm{x}) \cdot \mathrm{g}(\mathrm{x})}\) is equal to