Continuity of Specific Functions
Limits, Continuity and Differentiability

80096 If \(f(x)=\left\{\begin{array}{ccc}\frac{\sqrt{1+k x}-\sqrt{1-k x}}{x} \text { if } -1 \leq x\lt 0 \\ \frac{2 x+1}{x-1} \text { if } 0 \leq x \leq 1\end{array}\right.\) is continuous at \(x=0\), then the value of \(k\) is

1 1
2 -1
3 0
4 2
Limits, Continuity and Differentiability

80097 If \(f(x)=\left\{\begin{aligned} k x^{2} \text { if } x \leq 2 \\ 3 \text { if } x>2\end{aligned}\right.\) is continuous at \(x=2\), then the value of \(k\) is

1 \(\frac{4}{3}\)
2 \(\frac{3}{4}\)
3 3
4 4
Limits, Continuity and Differentiability

80098 The derivative of \(\cos ^{-1}\left(2 x^{2}-1\right)\) w.r.t. \(\cos ^{-1} x\) is

1 2
2 \(\frac{2}{x}\)
3 \(1-x^{2}\)
4 \(\frac{-1}{2 \sqrt{1-x^{2}}}\)
Limits, Continuity and Differentiability

80099 \(f(x)=\left\{\begin{array}{cl}3 x-8, \text { if } x \leq 5 \\ 2 k, \text { if } x>5\end{array}\right.\) is continuous, find \(k\).

1 \(\frac{3}{7}\)
2 \(\frac{7}{2}\)
3 \(\frac{2}{7}\)
4 \(\frac{4}{7}\)
Limits, Continuity and Differentiability

80100 If \(f(x)=\left\{\begin{array}{cl}\frac{3 \sin \pi x}{5 x}, x \neq 0 \\ 2 k \text { is continuous at } x=0\end{array}\right.\) then the value of \(k\) is

1 \(\frac{\pi}{10}\)
2 \(\frac{3 \pi}{10}\)
3 \(\frac{3 \pi}{2}\)
4 \(\frac{3 \pi}{5}\)
Limits, Continuity and Differentiability

80096 If \(f(x)=\left\{\begin{array}{ccc}\frac{\sqrt{1+k x}-\sqrt{1-k x}}{x} \text { if } -1 \leq x\lt 0 \\ \frac{2 x+1}{x-1} \text { if } 0 \leq x \leq 1\end{array}\right.\) is continuous at \(x=0\), then the value of \(k\) is

1 1
2 -1
3 0
4 2
Limits, Continuity and Differentiability

80097 If \(f(x)=\left\{\begin{aligned} k x^{2} \text { if } x \leq 2 \\ 3 \text { if } x>2\end{aligned}\right.\) is continuous at \(x=2\), then the value of \(k\) is

1 \(\frac{4}{3}\)
2 \(\frac{3}{4}\)
3 3
4 4
Limits, Continuity and Differentiability

80098 The derivative of \(\cos ^{-1}\left(2 x^{2}-1\right)\) w.r.t. \(\cos ^{-1} x\) is

1 2
2 \(\frac{2}{x}\)
3 \(1-x^{2}\)
4 \(\frac{-1}{2 \sqrt{1-x^{2}}}\)
Limits, Continuity and Differentiability

80099 \(f(x)=\left\{\begin{array}{cl}3 x-8, \text { if } x \leq 5 \\ 2 k, \text { if } x>5\end{array}\right.\) is continuous, find \(k\).

1 \(\frac{3}{7}\)
2 \(\frac{7}{2}\)
3 \(\frac{2}{7}\)
4 \(\frac{4}{7}\)
Limits, Continuity and Differentiability

80100 If \(f(x)=\left\{\begin{array}{cl}\frac{3 \sin \pi x}{5 x}, x \neq 0 \\ 2 k \text { is continuous at } x=0\end{array}\right.\) then the value of \(k\) is

1 \(\frac{\pi}{10}\)
2 \(\frac{3 \pi}{10}\)
3 \(\frac{3 \pi}{2}\)
4 \(\frac{3 \pi}{5}\)
Limits, Continuity and Differentiability

80096 If \(f(x)=\left\{\begin{array}{ccc}\frac{\sqrt{1+k x}-\sqrt{1-k x}}{x} \text { if } -1 \leq x\lt 0 \\ \frac{2 x+1}{x-1} \text { if } 0 \leq x \leq 1\end{array}\right.\) is continuous at \(x=0\), then the value of \(k\) is

1 1
2 -1
3 0
4 2
Limits, Continuity and Differentiability

80097 If \(f(x)=\left\{\begin{aligned} k x^{2} \text { if } x \leq 2 \\ 3 \text { if } x>2\end{aligned}\right.\) is continuous at \(x=2\), then the value of \(k\) is

1 \(\frac{4}{3}\)
2 \(\frac{3}{4}\)
3 3
4 4
Limits, Continuity and Differentiability

80098 The derivative of \(\cos ^{-1}\left(2 x^{2}-1\right)\) w.r.t. \(\cos ^{-1} x\) is

1 2
2 \(\frac{2}{x}\)
3 \(1-x^{2}\)
4 \(\frac{-1}{2 \sqrt{1-x^{2}}}\)
Limits, Continuity and Differentiability

80099 \(f(x)=\left\{\begin{array}{cl}3 x-8, \text { if } x \leq 5 \\ 2 k, \text { if } x>5\end{array}\right.\) is continuous, find \(k\).

1 \(\frac{3}{7}\)
2 \(\frac{7}{2}\)
3 \(\frac{2}{7}\)
4 \(\frac{4}{7}\)
Limits, Continuity and Differentiability

80100 If \(f(x)=\left\{\begin{array}{cl}\frac{3 \sin \pi x}{5 x}, x \neq 0 \\ 2 k \text { is continuous at } x=0\end{array}\right.\) then the value of \(k\) is

1 \(\frac{\pi}{10}\)
2 \(\frac{3 \pi}{10}\)
3 \(\frac{3 \pi}{2}\)
4 \(\frac{3 \pi}{5}\)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Limits, Continuity and Differentiability

80096 If \(f(x)=\left\{\begin{array}{ccc}\frac{\sqrt{1+k x}-\sqrt{1-k x}}{x} \text { if } -1 \leq x\lt 0 \\ \frac{2 x+1}{x-1} \text { if } 0 \leq x \leq 1\end{array}\right.\) is continuous at \(x=0\), then the value of \(k\) is

1 1
2 -1
3 0
4 2
Limits, Continuity and Differentiability

80097 If \(f(x)=\left\{\begin{aligned} k x^{2} \text { if } x \leq 2 \\ 3 \text { if } x>2\end{aligned}\right.\) is continuous at \(x=2\), then the value of \(k\) is

1 \(\frac{4}{3}\)
2 \(\frac{3}{4}\)
3 3
4 4
Limits, Continuity and Differentiability

80098 The derivative of \(\cos ^{-1}\left(2 x^{2}-1\right)\) w.r.t. \(\cos ^{-1} x\) is

1 2
2 \(\frac{2}{x}\)
3 \(1-x^{2}\)
4 \(\frac{-1}{2 \sqrt{1-x^{2}}}\)
Limits, Continuity and Differentiability

80099 \(f(x)=\left\{\begin{array}{cl}3 x-8, \text { if } x \leq 5 \\ 2 k, \text { if } x>5\end{array}\right.\) is continuous, find \(k\).

1 \(\frac{3}{7}\)
2 \(\frac{7}{2}\)
3 \(\frac{2}{7}\)
4 \(\frac{4}{7}\)
Limits, Continuity and Differentiability

80100 If \(f(x)=\left\{\begin{array}{cl}\frac{3 \sin \pi x}{5 x}, x \neq 0 \\ 2 k \text { is continuous at } x=0\end{array}\right.\) then the value of \(k\) is

1 \(\frac{\pi}{10}\)
2 \(\frac{3 \pi}{10}\)
3 \(\frac{3 \pi}{2}\)
4 \(\frac{3 \pi}{5}\)
Limits, Continuity and Differentiability

80096 If \(f(x)=\left\{\begin{array}{ccc}\frac{\sqrt{1+k x}-\sqrt{1-k x}}{x} \text { if } -1 \leq x\lt 0 \\ \frac{2 x+1}{x-1} \text { if } 0 \leq x \leq 1\end{array}\right.\) is continuous at \(x=0\), then the value of \(k\) is

1 1
2 -1
3 0
4 2
Limits, Continuity and Differentiability

80097 If \(f(x)=\left\{\begin{aligned} k x^{2} \text { if } x \leq 2 \\ 3 \text { if } x>2\end{aligned}\right.\) is continuous at \(x=2\), then the value of \(k\) is

1 \(\frac{4}{3}\)
2 \(\frac{3}{4}\)
3 3
4 4
Limits, Continuity and Differentiability

80098 The derivative of \(\cos ^{-1}\left(2 x^{2}-1\right)\) w.r.t. \(\cos ^{-1} x\) is

1 2
2 \(\frac{2}{x}\)
3 \(1-x^{2}\)
4 \(\frac{-1}{2 \sqrt{1-x^{2}}}\)
Limits, Continuity and Differentiability

80099 \(f(x)=\left\{\begin{array}{cl}3 x-8, \text { if } x \leq 5 \\ 2 k, \text { if } x>5\end{array}\right.\) is continuous, find \(k\).

1 \(\frac{3}{7}\)
2 \(\frac{7}{2}\)
3 \(\frac{2}{7}\)
4 \(\frac{4}{7}\)
Limits, Continuity and Differentiability

80100 If \(f(x)=\left\{\begin{array}{cl}\frac{3 \sin \pi x}{5 x}, x \neq 0 \\ 2 k \text { is continuous at } x=0\end{array}\right.\) then the value of \(k\) is

1 \(\frac{\pi}{10}\)
2 \(\frac{3 \pi}{10}\)
3 \(\frac{3 \pi}{2}\)
4 \(\frac{3 \pi}{5}\)