79474 ∑r=1n(2r−1)=x, thenlimn→0[13x2+23x2+33x2+…..+n3x2]=
(C) : Given, ∑r=1n(2r−1)=x2∑r=1nr−∑1=xs2[n(n+1)2]−n[2(n+1)x4]−n=x⇒n2+n−n=x⇒n2=xx=nlimn→0[13x2+23x2+33x2+……..+n3x2]=limn→0[1x2(13+23+33+………+n3)]=limn→0[1n4×{n(n+1)2}2]=14limn→0[(n+1)2n2]=14limn→0[n2+1+2nn2]=14limn→0[1+1nn+2n]=14[1+10+20]=14
79475 The value of limx→0|x|x is
(D) : Given, limx→0|x|xLHL =limh→0−|0−h|0−h⇒limh→0−h−h=−1RHL =limh→0+|0+h|0+h⇒limh→0+hh=1So, LHL ≠ RHL∴ Limit does not exist at x=0
79476 If the function f(x) satisfies limx→1f(x)−2x2−1=π, then limx→1f(x)=
(B) : Given, limx→1f(x)−2x2−1=πlimx→1(f(x)−2)limx→1x2−1=πlimx→1x→1(f(x)−2)=πlimx→1(x2−1)limx→1f(x)−limx→12=π(1−1)limx→1f(x)−2=0limx→1f(x)=2
79480 limn→∞{nsin2π3n⋅cos2π3n}=
(A) : Given, limn→∞{n⋅sin2π3n⋅cos2π3n}=12limn→∞{n⋅2sin2π3n⋅cos2π3n}=12limn→∞{n⋅sin4π3n}=12limn→∞{n⋅sin4π3n4π3n×4π3n}=4π6limn→∞{sin4π3n4π3n}∵limx→∞sinxx=1]=4π6×1=2π3
79481 limx→aa+2x−3x3a+x−2x=
(D) : Given, limx→aa+2x−3x3a+x−2x=limx→aa+2x−3x⋅a+2x+3xa+2x+3x⋅13a+x−2x⋅3a+x+2x3a+x+2x=limx→a[(a+2x)−3x][(3a+x)−4x]⋅3a+x+2xa+2x+3x=limx→a(a−x)3(a−x)×3a+x+2xa+2x+3x=limx→a133a+x+2xa+2x+3x=13×3a+a+2aa+2a+3a=13×4a+2a3a+3a=13×2a+2a23a=13×4a23a=233