Concept of Elementary Row and Column Operation
Matrix and Determinant

79419 A non-trivial solution of the system of equations \(x+\lambda y+2 z=0,2 x+\lambda z=0\)
\(2 \lambda x-2 y+3 z=0\) is given by \(x: y: z=\)

1 \(1: 2:-2\)
2 \(1:-2: 2\)
3 \(2: 1: 2\)
4 \(2: 1:-2\)
Matrix and Determinant

79420 If \(\mathbf{a} \neq \mathbf{p}, \mathbf{b} \neq \mathbf{q}, \mathbf{c} \neq \mathbf{r}\) and \(\left|\begin{array}{lll}p & b & c \\ \mathbf{a} & \mathbf{q} & \mathbf{c} \\ \mathbf{a} & \boldsymbol{b} & \mathbf{r}\end{array}\right|=0\), then the value of \(\frac{\mathbf{p}}{\mathbf{p}-\mathbf{a}}+\frac{\mathbf{q}}{\mathbf{q}-\mathbf{b}}+\frac{\mathbf{r}}{\mathbf{r}-\mathbf{c}}\) is

1 1
2 -1
3 0
4 2
Matrix and Determinant

79421 If the points \(\left(a_{1}, b_{1}\right),\left(a_{2}, b_{2}\right)\) and \(\left(a_{1}+a_{2}, b_{1}+b_{2}\right)\) are collinear, then

1 \(a_{1} b_{2}=a_{2} b_{1}\)
2 \(a_{1}+a_{2}=b_{1}+b_{2}\)
3 \(\mathrm{a}_{2} \mathrm{~b}_{2}=\mathrm{a}_{1} \mathrm{~b}\)
4 \(a_{1}+b_{1}=a_{2}+b_{2}\)
Matrix and Determinant

79422 For how many values of \(x\) in the closed interval \([-4,-1]\), the matrix
\(\left[\begin{array}{ccc}3 & -1+x & 2 \\ 3 & -1 & x+2 \\ x+3 & -1 & 2\end{array}\right]\) is singular?

1 0
2 2
3 1
4 3
Matrix and Determinant

79423 If \(a, b, c\) are in A.P., then the value of
\(\left|\begin{array}{lll}
\mathbf{x}+1 & \mathbf{x}+2 & \mathbf{x}+\mathbf{a} \\ \mathbf{x}+2 & \mathbf{x}+3 & \mathbf{x}+\mathbf{b} \\ \mathbf{x}+3 & \mathbf{x}+4 & \mathbf{x}+\mathbf{c} \end{array}\right| \text { is }\)

1 3
2 -3
3 0
4 2
Matrix and Determinant

79419 A non-trivial solution of the system of equations \(x+\lambda y+2 z=0,2 x+\lambda z=0\)
\(2 \lambda x-2 y+3 z=0\) is given by \(x: y: z=\)

1 \(1: 2:-2\)
2 \(1:-2: 2\)
3 \(2: 1: 2\)
4 \(2: 1:-2\)
Matrix and Determinant

79420 If \(\mathbf{a} \neq \mathbf{p}, \mathbf{b} \neq \mathbf{q}, \mathbf{c} \neq \mathbf{r}\) and \(\left|\begin{array}{lll}p & b & c \\ \mathbf{a} & \mathbf{q} & \mathbf{c} \\ \mathbf{a} & \boldsymbol{b} & \mathbf{r}\end{array}\right|=0\), then the value of \(\frac{\mathbf{p}}{\mathbf{p}-\mathbf{a}}+\frac{\mathbf{q}}{\mathbf{q}-\mathbf{b}}+\frac{\mathbf{r}}{\mathbf{r}-\mathbf{c}}\) is

1 1
2 -1
3 0
4 2
Matrix and Determinant

79421 If the points \(\left(a_{1}, b_{1}\right),\left(a_{2}, b_{2}\right)\) and \(\left(a_{1}+a_{2}, b_{1}+b_{2}\right)\) are collinear, then

1 \(a_{1} b_{2}=a_{2} b_{1}\)
2 \(a_{1}+a_{2}=b_{1}+b_{2}\)
3 \(\mathrm{a}_{2} \mathrm{~b}_{2}=\mathrm{a}_{1} \mathrm{~b}\)
4 \(a_{1}+b_{1}=a_{2}+b_{2}\)
Matrix and Determinant

79422 For how many values of \(x\) in the closed interval \([-4,-1]\), the matrix
\(\left[\begin{array}{ccc}3 & -1+x & 2 \\ 3 & -1 & x+2 \\ x+3 & -1 & 2\end{array}\right]\) is singular?

1 0
2 2
3 1
4 3
Matrix and Determinant

79423 If \(a, b, c\) are in A.P., then the value of
\(\left|\begin{array}{lll}
\mathbf{x}+1 & \mathbf{x}+2 & \mathbf{x}+\mathbf{a} \\ \mathbf{x}+2 & \mathbf{x}+3 & \mathbf{x}+\mathbf{b} \\ \mathbf{x}+3 & \mathbf{x}+4 & \mathbf{x}+\mathbf{c} \end{array}\right| \text { is }\)

1 3
2 -3
3 0
4 2
Matrix and Determinant

79419 A non-trivial solution of the system of equations \(x+\lambda y+2 z=0,2 x+\lambda z=0\)
\(2 \lambda x-2 y+3 z=0\) is given by \(x: y: z=\)

1 \(1: 2:-2\)
2 \(1:-2: 2\)
3 \(2: 1: 2\)
4 \(2: 1:-2\)
Matrix and Determinant

79420 If \(\mathbf{a} \neq \mathbf{p}, \mathbf{b} \neq \mathbf{q}, \mathbf{c} \neq \mathbf{r}\) and \(\left|\begin{array}{lll}p & b & c \\ \mathbf{a} & \mathbf{q} & \mathbf{c} \\ \mathbf{a} & \boldsymbol{b} & \mathbf{r}\end{array}\right|=0\), then the value of \(\frac{\mathbf{p}}{\mathbf{p}-\mathbf{a}}+\frac{\mathbf{q}}{\mathbf{q}-\mathbf{b}}+\frac{\mathbf{r}}{\mathbf{r}-\mathbf{c}}\) is

1 1
2 -1
3 0
4 2
Matrix and Determinant

79421 If the points \(\left(a_{1}, b_{1}\right),\left(a_{2}, b_{2}\right)\) and \(\left(a_{1}+a_{2}, b_{1}+b_{2}\right)\) are collinear, then

1 \(a_{1} b_{2}=a_{2} b_{1}\)
2 \(a_{1}+a_{2}=b_{1}+b_{2}\)
3 \(\mathrm{a}_{2} \mathrm{~b}_{2}=\mathrm{a}_{1} \mathrm{~b}\)
4 \(a_{1}+b_{1}=a_{2}+b_{2}\)
Matrix and Determinant

79422 For how many values of \(x\) in the closed interval \([-4,-1]\), the matrix
\(\left[\begin{array}{ccc}3 & -1+x & 2 \\ 3 & -1 & x+2 \\ x+3 & -1 & 2\end{array}\right]\) is singular?

1 0
2 2
3 1
4 3
Matrix and Determinant

79423 If \(a, b, c\) are in A.P., then the value of
\(\left|\begin{array}{lll}
\mathbf{x}+1 & \mathbf{x}+2 & \mathbf{x}+\mathbf{a} \\ \mathbf{x}+2 & \mathbf{x}+3 & \mathbf{x}+\mathbf{b} \\ \mathbf{x}+3 & \mathbf{x}+4 & \mathbf{x}+\mathbf{c} \end{array}\right| \text { is }\)

1 3
2 -3
3 0
4 2
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Matrix and Determinant

79419 A non-trivial solution of the system of equations \(x+\lambda y+2 z=0,2 x+\lambda z=0\)
\(2 \lambda x-2 y+3 z=0\) is given by \(x: y: z=\)

1 \(1: 2:-2\)
2 \(1:-2: 2\)
3 \(2: 1: 2\)
4 \(2: 1:-2\)
Matrix and Determinant

79420 If \(\mathbf{a} \neq \mathbf{p}, \mathbf{b} \neq \mathbf{q}, \mathbf{c} \neq \mathbf{r}\) and \(\left|\begin{array}{lll}p & b & c \\ \mathbf{a} & \mathbf{q} & \mathbf{c} \\ \mathbf{a} & \boldsymbol{b} & \mathbf{r}\end{array}\right|=0\), then the value of \(\frac{\mathbf{p}}{\mathbf{p}-\mathbf{a}}+\frac{\mathbf{q}}{\mathbf{q}-\mathbf{b}}+\frac{\mathbf{r}}{\mathbf{r}-\mathbf{c}}\) is

1 1
2 -1
3 0
4 2
Matrix and Determinant

79421 If the points \(\left(a_{1}, b_{1}\right),\left(a_{2}, b_{2}\right)\) and \(\left(a_{1}+a_{2}, b_{1}+b_{2}\right)\) are collinear, then

1 \(a_{1} b_{2}=a_{2} b_{1}\)
2 \(a_{1}+a_{2}=b_{1}+b_{2}\)
3 \(\mathrm{a}_{2} \mathrm{~b}_{2}=\mathrm{a}_{1} \mathrm{~b}\)
4 \(a_{1}+b_{1}=a_{2}+b_{2}\)
Matrix and Determinant

79422 For how many values of \(x\) in the closed interval \([-4,-1]\), the matrix
\(\left[\begin{array}{ccc}3 & -1+x & 2 \\ 3 & -1 & x+2 \\ x+3 & -1 & 2\end{array}\right]\) is singular?

1 0
2 2
3 1
4 3
Matrix and Determinant

79423 If \(a, b, c\) are in A.P., then the value of
\(\left|\begin{array}{lll}
\mathbf{x}+1 & \mathbf{x}+2 & \mathbf{x}+\mathbf{a} \\ \mathbf{x}+2 & \mathbf{x}+3 & \mathbf{x}+\mathbf{b} \\ \mathbf{x}+3 & \mathbf{x}+4 & \mathbf{x}+\mathbf{c} \end{array}\right| \text { is }\)

1 3
2 -3
3 0
4 2
Matrix and Determinant

79419 A non-trivial solution of the system of equations \(x+\lambda y+2 z=0,2 x+\lambda z=0\)
\(2 \lambda x-2 y+3 z=0\) is given by \(x: y: z=\)

1 \(1: 2:-2\)
2 \(1:-2: 2\)
3 \(2: 1: 2\)
4 \(2: 1:-2\)
Matrix and Determinant

79420 If \(\mathbf{a} \neq \mathbf{p}, \mathbf{b} \neq \mathbf{q}, \mathbf{c} \neq \mathbf{r}\) and \(\left|\begin{array}{lll}p & b & c \\ \mathbf{a} & \mathbf{q} & \mathbf{c} \\ \mathbf{a} & \boldsymbol{b} & \mathbf{r}\end{array}\right|=0\), then the value of \(\frac{\mathbf{p}}{\mathbf{p}-\mathbf{a}}+\frac{\mathbf{q}}{\mathbf{q}-\mathbf{b}}+\frac{\mathbf{r}}{\mathbf{r}-\mathbf{c}}\) is

1 1
2 -1
3 0
4 2
Matrix and Determinant

79421 If the points \(\left(a_{1}, b_{1}\right),\left(a_{2}, b_{2}\right)\) and \(\left(a_{1}+a_{2}, b_{1}+b_{2}\right)\) are collinear, then

1 \(a_{1} b_{2}=a_{2} b_{1}\)
2 \(a_{1}+a_{2}=b_{1}+b_{2}\)
3 \(\mathrm{a}_{2} \mathrm{~b}_{2}=\mathrm{a}_{1} \mathrm{~b}\)
4 \(a_{1}+b_{1}=a_{2}+b_{2}\)
Matrix and Determinant

79422 For how many values of \(x\) in the closed interval \([-4,-1]\), the matrix
\(\left[\begin{array}{ccc}3 & -1+x & 2 \\ 3 & -1 & x+2 \\ x+3 & -1 & 2\end{array}\right]\) is singular?

1 0
2 2
3 1
4 3
Matrix and Determinant

79423 If \(a, b, c\) are in A.P., then the value of
\(\left|\begin{array}{lll}
\mathbf{x}+1 & \mathbf{x}+2 & \mathbf{x}+\mathbf{a} \\ \mathbf{x}+2 & \mathbf{x}+3 & \mathbf{x}+\mathbf{b} \\ \mathbf{x}+3 & \mathbf{x}+4 & \mathbf{x}+\mathbf{c} \end{array}\right| \text { is }\)

1 3
2 -3
3 0
4 2