79252
If \(3 x+2 y+z=0, x+4 y+z=0,2 x+y+4 z=0\) be a system of homogeneous equation, then
1 it is inconsistent.
2 only trivial solution exists.
3 it can be reduced to a single equation, so that no solution exists
4 determinant of the coefficient matrix is zero.
Explanation:
(B)Here, we have \(3 \mathrm{x}+2 \mathrm{y}+\mathrm{z}=0\) \(\mathrm{x}+4 \mathrm{y}+\mathrm{z}=0\) \(2 \mathrm{x}+\mathrm{y}+4 \mathrm{z}=0\) \({\left[\begin{array}{lll} 3 & 2 & 1 \\ 1 & 4 & 1 \\ 2 & 1 & 4 \end{array}\right]\left[\begin{array}{l} \mathrm{x} \\ \mathrm{y} \\ \mathrm{Ax}=0 \end{array}\right]=\left[\begin{array}{l} 0 \\ 0 \\ 0 \end{array}\right]}\) \(\therefore \text { Coefficient matrix } \mathrm{A}=\left[\begin{array}{lll} 3 & 2 & 1 \\ 1 & 4 & 1 \\ 2 & 1 & 4 \end{array}\right]\) \(|\mathrm{A}|=3(16-1)-2(4-2)+1(1-8)\) \(=45-4-7=34\) \(|\mathrm{~A}| \neq 0\) So, the given system of equation has only trivial solution.
SRM JEE-2016
Matrix and Determinant
79253
The system of equations \(2 x+y-5=0\), \(x-2 y+1=9,2 x-14 y-a=0\), is consistent. Then, \(a\) is equal to
1 1
2 2
3 5
4 None of these
Explanation:
(D) : Here, we have \(2 \mathrm{x}+\mathrm{y}-5=0\) \(\mathrm{x}-2 \mathrm{y}+1=0\) This system is consistent, \(\therefore\left|\begin{array}{ccc} 2 & 1 & -5 \\ 1 & -2 & 1 \\ 2 & -14 & -a \end{array}\right|=0 \tag{iii}\) \(2(2 a+14)-1(-a-2)-5(-14+4)=0\) \(4 a+28+a+2+50=0\) \(5 a=-80 \Rightarrow a=-16 .\)
VITEEE-2011
Matrix and Determinant
79254
The value of \(x\) obtained from the equation \(\left|\begin{array}{ccc} \mathbf{x}+\boldsymbol{\alpha} & \boldsymbol{\beta} & \boldsymbol{\gamma} \\ \boldsymbol{\gamma} & \mathbf{x}+\boldsymbol{\beta} & \boldsymbol{\alpha} \\ \boldsymbol{\alpha} & \boldsymbol{\beta} & \mathbf{x}+\boldsymbol{\gamma} \end{array}\right|=\mathbf{0} \text { will be }\)