Differentiation and Integration of Determinant
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Matrix and Determinant

79245 If \(f(x)=\left|\begin{array}{ccc}1+\sin x+\sin 2 x+\sin 3 x & \frac{3+\sin 2 x}{2} & \frac{-2+\sin 3 x}{3} \\ 3+4 \sin x & \frac{3}{2} & \frac{4}{3} \sin x \\ 1+\sin x & \frac{1}{2} \sin x & \frac{1}{3}\end{array}\right|\) then \(\int_0^{\pi / 2}\left(f(x)+f^{\prime}(x)\right) d x=\)

1 \(\frac{-1}{6}\)
2 \(\frac{-1}{9}\)
3 \(\frac{-2}{9}\)
4 \(\frac{1}{27}\)
Matrix and Determinant

79239 If \(f(x)=\left|\begin{array}{lll}\cos x & x & 1 \\ 2 \sin x & x^{2} & 2 x \\ \tan x & x & 1\end{array}\right|\), then the value of \(f^{\prime}(x)\) at \(x=0\) is equal to

1 -1
2 1
3 2
4 0
Matrix and Determinant

79240 If \(f(x)=\left|\begin{array}{ccc}\cos x & 1 & 0 \\ 1 & 2 \cos x & 1 \\ 0 & 1 & 2 \cos x\end{array}\right|\), then \(\int_{0}^{\pi / 2} f(x) d x\) is equal to

1 \(\frac{1}{4}\)
2 \(-\frac{1}{3}\)
3 \(\frac{1}{2}\)
4 1
Matrix and Determinant

79245 If \(f(x)=\left|\begin{array}{ccc}1+\sin x+\sin 2 x+\sin 3 x & \frac{3+\sin 2 x}{2} & \frac{-2+\sin 3 x}{3} \\ 3+4 \sin x & \frac{3}{2} & \frac{4}{3} \sin x \\ 1+\sin x & \frac{1}{2} \sin x & \frac{1}{3}\end{array}\right|\) then \(\int_0^{\pi / 2}\left(f(x)+f^{\prime}(x)\right) d x=\)

1 \(\frac{-1}{6}\)
2 \(\frac{-1}{9}\)
3 \(\frac{-2}{9}\)
4 \(\frac{1}{27}\)
Matrix and Determinant

79239 If \(f(x)=\left|\begin{array}{lll}\cos x & x & 1 \\ 2 \sin x & x^{2} & 2 x \\ \tan x & x & 1\end{array}\right|\), then the value of \(f^{\prime}(x)\) at \(x=0\) is equal to

1 -1
2 1
3 2
4 0
Matrix and Determinant

79240 If \(f(x)=\left|\begin{array}{ccc}\cos x & 1 & 0 \\ 1 & 2 \cos x & 1 \\ 0 & 1 & 2 \cos x\end{array}\right|\), then \(\int_{0}^{\pi / 2} f(x) d x\) is equal to

1 \(\frac{1}{4}\)
2 \(-\frac{1}{3}\)
3 \(\frac{1}{2}\)
4 1
Matrix and Determinant

79245 If \(f(x)=\left|\begin{array}{ccc}1+\sin x+\sin 2 x+\sin 3 x & \frac{3+\sin 2 x}{2} & \frac{-2+\sin 3 x}{3} \\ 3+4 \sin x & \frac{3}{2} & \frac{4}{3} \sin x \\ 1+\sin x & \frac{1}{2} \sin x & \frac{1}{3}\end{array}\right|\) then \(\int_0^{\pi / 2}\left(f(x)+f^{\prime}(x)\right) d x=\)

1 \(\frac{-1}{6}\)
2 \(\frac{-1}{9}\)
3 \(\frac{-2}{9}\)
4 \(\frac{1}{27}\)
Matrix and Determinant

79239 If \(f(x)=\left|\begin{array}{lll}\cos x & x & 1 \\ 2 \sin x & x^{2} & 2 x \\ \tan x & x & 1\end{array}\right|\), then the value of \(f^{\prime}(x)\) at \(x=0\) is equal to

1 -1
2 1
3 2
4 0
Matrix and Determinant

79240 If \(f(x)=\left|\begin{array}{ccc}\cos x & 1 & 0 \\ 1 & 2 \cos x & 1 \\ 0 & 1 & 2 \cos x\end{array}\right|\), then \(\int_{0}^{\pi / 2} f(x) d x\) is equal to

1 \(\frac{1}{4}\)
2 \(-\frac{1}{3}\)
3 \(\frac{1}{2}\)
4 1
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here