Determinants and their Properties
Matrix and Determinant

79080 If each element of a 3×3 matrix is multiplied by 3 , then the determinant of the newly formed matrix is

1 3| A|
2 9| A|
3 27A
4 |A|3
Matrix and Determinant

79081 IF A+B+C=π, then
|sin(A+B+C)sinBcosCsinB0tanAcos(A+B)tanA0| is equal to

1 sinA
2 sinAcosB
3 0
4 None of these
Matrix and Determinant

79082 The value of |aa+ba+2ba+2baa+ba+ba+2ba| is equal to

1 9a2(a+b)
2 9b2(a+b)
3 a2(a+b)
4 b2(a+b)
Matrix and Determinant

79084 If a+b+c=0, then a root of
|axcbcbxabacx|=0 is 

1 0
2 1
3 a2+b2+c2
4 3
Matrix and Determinant

79080 If each element of a 3×3 matrix is multiplied by 3 , then the determinant of the newly formed matrix is

1 3| A|
2 9| A|
3 27A
4 |A|3
Matrix and Determinant

79081 IF A+B+C=π, then
|sin(A+B+C)sinBcosCsinB0tanAcos(A+B)tanA0| is equal to

1 sinA
2 sinAcosB
3 0
4 None of these
Matrix and Determinant

79082 The value of |aa+ba+2ba+2baa+ba+ba+2ba| is equal to

1 9a2(a+b)
2 9b2(a+b)
3 a2(a+b)
4 b2(a+b)
Matrix and Determinant

79083 |a2+1abacabb2+1bcaccbc2+1|=

1 1+b2+c2
2 a2+b2+c2
3 1+a2+b2
4 1+a2+b2+c2
Matrix and Determinant

79084 If a+b+c=0, then a root of
|axcbcbxabacx|=0 is 

1 0
2 1
3 a2+b2+c2
4 3
Matrix and Determinant

79080 If each element of a 3×3 matrix is multiplied by 3 , then the determinant of the newly formed matrix is

1 3| A|
2 9| A|
3 27A
4 |A|3
Matrix and Determinant

79081 IF A+B+C=π, then
|sin(A+B+C)sinBcosCsinB0tanAcos(A+B)tanA0| is equal to

1 sinA
2 sinAcosB
3 0
4 None of these
Matrix and Determinant

79082 The value of |aa+ba+2ba+2baa+ba+ba+2ba| is equal to

1 9a2(a+b)
2 9b2(a+b)
3 a2(a+b)
4 b2(a+b)
Matrix and Determinant

79083 |a2+1abacabb2+1bcaccbc2+1|=

1 1+b2+c2
2 a2+b2+c2
3 1+a2+b2
4 1+a2+b2+c2
Matrix and Determinant

79084 If a+b+c=0, then a root of
|axcbcbxabacx|=0 is 

1 0
2 1
3 a2+b2+c2
4 3
Matrix and Determinant

79080 If each element of a 3×3 matrix is multiplied by 3 , then the determinant of the newly formed matrix is

1 3| A|
2 9| A|
3 27A
4 |A|3
Matrix and Determinant

79081 IF A+B+C=π, then
|sin(A+B+C)sinBcosCsinB0tanAcos(A+B)tanA0| is equal to

1 sinA
2 sinAcosB
3 0
4 None of these
Matrix and Determinant

79082 The value of |aa+ba+2ba+2baa+ba+ba+2ba| is equal to

1 9a2(a+b)
2 9b2(a+b)
3 a2(a+b)
4 b2(a+b)
Matrix and Determinant

79083 |a2+1abacabb2+1bcaccbc2+1|=

1 1+b2+c2
2 a2+b2+c2
3 1+a2+b2
4 1+a2+b2+c2
Matrix and Determinant

79084 If a+b+c=0, then a root of
|axcbcbxabacx|=0 is 

1 0
2 1
3 a2+b2+c2
4 3
Matrix and Determinant

79080 If each element of a 3×3 matrix is multiplied by 3 , then the determinant of the newly formed matrix is

1 3| A|
2 9| A|
3 27A
4 |A|3
Matrix and Determinant

79081 IF A+B+C=π, then
|sin(A+B+C)sinBcosCsinB0tanAcos(A+B)tanA0| is equal to

1 sinA
2 sinAcosB
3 0
4 None of these
Matrix and Determinant

79082 The value of |aa+ba+2ba+2baa+ba+ba+2ba| is equal to

1 9a2(a+b)
2 9b2(a+b)
3 a2(a+b)
4 b2(a+b)
Matrix and Determinant

79083 |a2+1abacabb2+1bcaccbc2+1|=

1 1+b2+c2
2 a2+b2+c2
3 1+a2+b2
4 1+a2+b2+c2
Matrix and Determinant

79084 If a+b+c=0, then a root of
|axcbcbxabacx|=0 is 

1 0
2 1
3 a2+b2+c2
4 3