79080 If each element of a 3×3 matrix is multiplied by 3 , then the determinant of the newly formed matrix is
(C) : Given,Each element of a 3×3 matrix is multiples by 3 .∵ ThereforeWe can have matrix=3×3×3| A|=27| A|
79081 IF A+B+C=π, then|sin(A+B+C)sinBcosC−sinB0tanAcos(A+B)−tanA0| is equal to
(C) : Above is skew symmetric determinants of odd order because cos(A+B)=−cosC and sin(A+B +C)=0. Therefore its value is zero.hence, option (c) is correct.
79082 The value of |aa+ba+2ba+2baa+ba+ba+2ba| is equal to
(B) : Given,On applying (R1→R1+R2+R3) we get,=|3(a+b)3(a+b)3(a+b)a+2baa+ba+ba+2ba|=3(a+b)|111a+2baa+ba+ba+2ba|On applying C2→C2−C1,C3→C3−C1 we get,=3(a+b)|100a+2b−2b−ba+2bb−b|=3(a+b)[1(−2b(−b)−(−b)(b)−0+0)]=3(a+b)[2b2+b2]=3(a+b)(3b2)=9b2(a+b)
79083 |a2+1abacabb2+1bcaccbc2+1|=
(D) : Given,|a2+1abacabb2+1bcaccbc2+1|=1abc|a(a2+1)a2ba2cab2b(b2+1)b2cc2ac2bc(c2+1)|On applying,(R1→aRR1,R2→bR2,R3→cR3)=|a2+1a2a2 b2 b2+1 b2c2c2c2+1|On applying,(c1→1ac1,c2→1 bc2,c3→13c3)And applying R1→R1+R2+R3|1+a2+b2+c21+a2+b2+c21+a2+b2+c2b2b2+1b2c2c2c2+1|=(1+a2+b2+c2)|100b210c201|on applying,(c2→c2−c1,c3→c3−c1)=(1+a2+b2+c2)1[1−0]=(1+a2+b2+c2)
79084 If a+b+c=0, then a root of|a−xcbcb−xabac−x|=0 is
(A) : Given,a+b+c=0|a−xcbcb−xabac−x|=0On applying,C1→C1+C2+C3|a+b+c−xcba+b+c−xb−xaa+b+c−xac−x|=0=(a+b+c−x)|1cb1 b−xa1ac−x|=0Given that,So, (0−x)|1cb1 b−xa1ac−x|=0x|1cb1b−xa1ac−x|=0Hence, x=0|pbc|